![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abnex | Structured version Visualization version GIF version |
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7766 and pwnex 7767. See the comment of abnexg 7764. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
abnex | ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5319 | . 2 ⊢ ¬ V ∈ V | |
2 | alral 3072 | . . 3 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹)) | |
3 | rexv 3499 | . . . . . . 7 ⊢ (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹) | |
4 | 3 | bicomi 223 | . . . . . 6 ⊢ (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹) |
5 | 4 | abbii 2798 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} |
6 | 5 | eleq1i 2820 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
7 | 6 | biimpi 215 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
8 | abnexg 7764 | . . 3 ⊢ (∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V)) | |
9 | 2, 7, 8 | syl2im 40 | . 2 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V)) |
10 | 1, 9 | mtoi 198 | 1 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2699 ax-sep 5303 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-in 3956 df-ss 3966 df-sn 4633 df-uni 4913 df-iun 5002 |
This theorem is referenced by: snnex 7766 pwnex 7767 |
Copyright terms: Public domain | W3C validator |