MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abnex Structured version   Visualization version   GIF version

Theorem abnex 7585
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7586 and pwnex 7587. See the comment of abnexg 7584. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
abnex (∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abnex
StepHypRef Expression
1 vprc 5234 . 2 ¬ V ∈ V
2 alral 3079 . . 3 (∀𝑥(𝐹𝑉𝑥𝐹) → ∀𝑥 ∈ V (𝐹𝑉𝑥𝐹))
3 rexv 3447 . . . . . . 7 (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹)
43bicomi 223 . . . . . 6 (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹)
54abbii 2809 . . . . 5 {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹}
65eleq1i 2829 . . . 4 ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V)
76biimpi 215 . . 3 ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V)
8 abnexg 7584 . . 3 (∀𝑥 ∈ V (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V))
92, 7, 8syl2im 40 . 2 (∀𝑥(𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V))
101, 9mtoi 198 1 (∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iun 4923
This theorem is referenced by:  snnex  7586  pwnex  7587
  Copyright terms: Public domain W3C validator