MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abnex Structured version   Visualization version   GIF version

Theorem abnex 7690
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7691 and pwnex 7692. See the comment of abnexg 7689. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
abnex (∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abnex
StepHypRef Expression
1 vprc 5251 . 2 ¬ V ∈ V
2 alral 3061 . . 3 (∀𝑥(𝐹𝑉𝑥𝐹) → ∀𝑥 ∈ V (𝐹𝑉𝑥𝐹))
3 rexv 3464 . . . . . . 7 (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹)
43bicomi 224 . . . . . 6 (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹)
54abbii 2798 . . . . 5 {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹}
65eleq1i 2822 . . . 4 ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V)
76biimpi 216 . . 3 ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V)
8 abnexg 7689 . . 3 (∀𝑥 ∈ V (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V))
92, 7, 8syl2im 40 . 2 (∀𝑥(𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V))
101, 9mtoi 199 1 (∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-sn 4574  df-uni 4857  df-iun 4941
This theorem is referenced by:  snnex  7691  pwnex  7692
  Copyright terms: Public domain W3C validator