Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abnex | Structured version Visualization version GIF version |
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7600 and pwnex 7601. See the comment of abnexg 7598. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
abnex | ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5243 | . 2 ⊢ ¬ V ∈ V | |
2 | alral 3082 | . . 3 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹)) | |
3 | rexv 3456 | . . . . . . 7 ⊢ (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹) | |
4 | 3 | bicomi 223 | . . . . . 6 ⊢ (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹) |
5 | 4 | abbii 2810 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} |
6 | 5 | eleq1i 2831 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
7 | 6 | biimpi 215 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
8 | abnexg 7598 | . . 3 ⊢ (∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V)) | |
9 | 2, 7, 8 | syl2im 40 | . 2 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V)) |
10 | 1, 9 | mtoi 198 | 1 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2110 {cab 2717 ∀wral 3066 ∃wrex 3067 Vcvv 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-sn 4568 df-uni 4846 df-iun 4932 |
This theorem is referenced by: snnex 7600 pwnex 7601 |
Copyright terms: Public domain | W3C validator |