Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopelaltxp | Structured version Visualization version GIF version |
Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5626, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopelaltxp | ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elaltxp 34273 | . 2 ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫) | |
2 | reeanv 3295 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 = 𝑌)) | |
3 | eqcom 2747 | . . . . 5 ⊢ (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫) | |
4 | vex 3435 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | vex 3435 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | altopth 34267 | . . . . 5 ⊢ (⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫ ↔ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
7 | 3, 6 | bitri 274 | . . . 4 ⊢ (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
8 | 7 | 2rexbii 3181 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
9 | risset 3196 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
10 | risset 3196 | . . . 4 ⊢ (𝑌 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝑌) | |
11 | 9, 10 | anbi12i 627 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 = 𝑌)) |
12 | 2, 8, 11 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
13 | 1, 12 | bitri 274 | 1 ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ⟪caltop 34254 ×× caltxp 34255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4568 df-pr 4570 df-altop 34256 df-altxp 34257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |