![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopelaltxp | Structured version Visualization version GIF version |
Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5708, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopelaltxp | ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elaltxp 35627 | . 2 ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫) | |
2 | reeanv 3217 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 = 𝑌)) | |
3 | eqcom 2732 | . . . . 5 ⊢ (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫) | |
4 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | altopth 35621 | . . . . 5 ⊢ (⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫ ↔ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
7 | 3, 6 | bitri 274 | . . . 4 ⊢ (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
8 | 7 | 2rexbii 3119 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
9 | risset 3221 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
10 | risset 3221 | . . . 4 ⊢ (𝑌 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝑌) | |
11 | 9, 10 | anbi12i 626 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 = 𝑌)) |
12 | 2, 8, 11 | 3bitr4i 302 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
13 | 1, 12 | bitri 274 | 1 ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ⟪caltop 35608 ×× caltxp 35609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-sn 4625 df-pr 4627 df-altop 35610 df-altxp 35611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |