Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopelaltxp Structured version   Visualization version   GIF version

Theorem altopelaltxp 35628
Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5708, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopelaltxp (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋𝐴𝑌𝐵))

Proof of Theorem altopelaltxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 35627 . 2 (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫)
2 reeanv 3217 . . 3 (∃𝑥𝐴𝑦𝐵 (𝑥 = 𝑋𝑦 = 𝑌) ↔ (∃𝑥𝐴 𝑥 = 𝑋 ∧ ∃𝑦𝐵 𝑦 = 𝑌))
3 eqcom 2732 . . . . 5 (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫)
4 vex 3467 . . . . . 6 𝑥 ∈ V
5 vex 3467 . . . . . 6 𝑦 ∈ V
64, 5altopth 35621 . . . . 5 (⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
73, 6bitri 274 . . . 4 (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
872rexbii 3119 . . 3 (∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥𝐴𝑦𝐵 (𝑥 = 𝑋𝑦 = 𝑌))
9 risset 3221 . . . 4 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
10 risset 3221 . . . 4 (𝑌𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑌)
119, 10anbi12i 626 . . 3 ((𝑋𝐴𝑌𝐵) ↔ (∃𝑥𝐴 𝑥 = 𝑋 ∧ ∃𝑦𝐵 𝑦 = 𝑌))
122, 8, 113bitr4i 302 . 2 (∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑋𝐴𝑌𝐵))
131, 12bitri 274 1 (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3060  caltop 35608   ×× caltxp 35609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-sn 4625  df-pr 4627  df-altop 35610  df-altxp 35611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator