Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopelaltxp Structured version   Visualization version   GIF version

Theorem altopelaltxp 34278
Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5625, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopelaltxp (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋𝐴𝑌𝐵))

Proof of Theorem altopelaltxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 34277 . 2 (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫)
2 reeanv 3294 . . 3 (∃𝑥𝐴𝑦𝐵 (𝑥 = 𝑋𝑦 = 𝑌) ↔ (∃𝑥𝐴 𝑥 = 𝑋 ∧ ∃𝑦𝐵 𝑦 = 𝑌))
3 eqcom 2745 . . . . 5 (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫)
4 vex 3436 . . . . . 6 𝑥 ∈ V
5 vex 3436 . . . . . 6 𝑦 ∈ V
64, 5altopth 34271 . . . . 5 (⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
73, 6bitri 274 . . . 4 (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
872rexbii 3182 . . 3 (∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥𝐴𝑦𝐵 (𝑥 = 𝑋𝑦 = 𝑌))
9 risset 3194 . . . 4 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
10 risset 3194 . . . 4 (𝑌𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑌)
119, 10anbi12i 627 . . 3 ((𝑋𝐴𝑌𝐵) ↔ (∃𝑥𝐴 𝑥 = 𝑋 ∧ ∃𝑦𝐵 𝑦 = 𝑌))
122, 8, 113bitr4i 303 . 2 (∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑋𝐴𝑌𝐵))
131, 12bitri 274 1 (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  caltop 34258   ×× caltxp 34259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-altop 34260  df-altxp 34261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator