MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlpropd Structured version   Visualization version   GIF version

Theorem phlpropd 20344
Description: If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlpropd.1 (𝜑𝐵 = (Base‘𝐾))
phlpropd.2 (𝜑𝐵 = (Base‘𝐿))
phlpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
phlpropd.4 (𝜑𝐹 = (Scalar‘𝐾))
phlpropd.5 (𝜑𝐹 = (Scalar‘𝐿))
phlpropd.6 𝑃 = (Base‘𝐹)
phlpropd.7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
phlpropd.8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(·𝑖𝐾)𝑦) = (𝑥(·𝑖𝐿)𝑦))
Assertion
Ref Expression
phlpropd (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦

Proof of Theorem phlpropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phlpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 phlpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 phlpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 phlpropd.4 . . . 4 (𝜑𝐹 = (Scalar‘𝐾))
5 phlpropd.5 . . . 4 (𝜑𝐹 = (Scalar‘𝐿))
6 phlpropd.6 . . . 4 𝑃 = (Base‘𝐹)
7 phlpropd.7 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
81, 2, 3, 4, 5, 6, 7lvecpropd 19932 . . 3 (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
94, 5eqtr3d 2835 . . . 4 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
109eleq1d 2874 . . 3 (𝜑 → ((Scalar‘𝐾) ∈ *-Ring ↔ (Scalar‘𝐿) ∈ *-Ring))
11 phlpropd.8 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(·𝑖𝐾)𝑦) = (𝑥(·𝑖𝐿)𝑦))
1211oveqrspc2v 7162 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑎𝐵)) → (𝑏(·𝑖𝐾)𝑎) = (𝑏(·𝑖𝐿)𝑎))
1312anass1rs 654 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑏(·𝑖𝐾)𝑎) = (𝑏(·𝑖𝐿)𝑎))
1413mpteq2dva 5125 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑏𝐵 ↦ (𝑏(·𝑖𝐾)𝑎)) = (𝑏𝐵 ↦ (𝑏(·𝑖𝐿)𝑎)))
151adantr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝐾))
1615mpteq1d 5119 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑏𝐵 ↦ (𝑏(·𝑖𝐾)𝑎)) = (𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)))
172adantr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝐿))
1817mpteq1d 5119 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑏𝐵 ↦ (𝑏(·𝑖𝐿)𝑎)) = (𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)))
1914, 16, 183eqtr3d 2841 . . . . . . 7 ((𝜑𝑎𝐵) → (𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) = (𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)))
20 rlmbas 19960 . . . . . . . . . . . 12 (Base‘𝐹) = (Base‘(ringLMod‘𝐹))
216, 20eqtri 2821 . . . . . . . . . . 11 𝑃 = (Base‘(ringLMod‘𝐹))
2221a1i 11 . . . . . . . . . 10 (𝜑𝑃 = (Base‘(ringLMod‘𝐹)))
23 fvex 6658 . . . . . . . . . . . 12 (Scalar‘𝐾) ∈ V
244, 23eqeltrdi 2898 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
25 rlmsca 19965 . . . . . . . . . . 11 (𝐹 ∈ V → 𝐹 = (Scalar‘(ringLMod‘𝐹)))
2624, 25syl 17 . . . . . . . . . 10 (𝜑𝐹 = (Scalar‘(ringLMod‘𝐹)))
27 eqidd 2799 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g‘(ringLMod‘𝐹))𝑦) = (𝑥(+g‘(ringLMod‘𝐹))𝑦))
28 eqidd 2799 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐹))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐹))𝑦))
291, 22, 2, 22, 4, 26, 5, 26, 6, 6, 3, 27, 7, 28lmhmpropd 19838 . . . . . . . . 9 (𝜑 → (𝐾 LMHom (ringLMod‘𝐹)) = (𝐿 LMHom (ringLMod‘𝐹)))
304fveq2d 6649 . . . . . . . . . 10 (𝜑 → (ringLMod‘𝐹) = (ringLMod‘(Scalar‘𝐾)))
3130oveq2d 7151 . . . . . . . . 9 (𝜑 → (𝐾 LMHom (ringLMod‘𝐹)) = (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))))
325fveq2d 6649 . . . . . . . . . 10 (𝜑 → (ringLMod‘𝐹) = (ringLMod‘(Scalar‘𝐿)))
3332oveq2d 7151 . . . . . . . . 9 (𝜑 → (𝐿 LMHom (ringLMod‘𝐹)) = (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))))
3429, 31, 333eqtr3d 2841 . . . . . . . 8 (𝜑 → (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) = (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))))
3534adantr 484 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) = (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))))
3619, 35eleq12d 2884 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ↔ (𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿)))))
3711oveqrspc2v 7162 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑎𝐵)) → (𝑎(·𝑖𝐾)𝑎) = (𝑎(·𝑖𝐿)𝑎))
3837anabsan2 673 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎(·𝑖𝐾)𝑎) = (𝑎(·𝑖𝐿)𝑎))
399fveq2d 6649 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
4039adantr 484 . . . . . . . 8 ((𝜑𝑎𝐵) → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
4138, 40eqeq12d 2814 . . . . . . 7 ((𝜑𝑎𝐵) → ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) ↔ (𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿))))
421, 2, 3grpidpropd 17864 . . . . . . . . 9 (𝜑 → (0g𝐾) = (0g𝐿))
4342adantr 484 . . . . . . . 8 ((𝜑𝑎𝐵) → (0g𝐾) = (0g𝐿))
4443eqeq2d 2809 . . . . . . 7 ((𝜑𝑎𝐵) → (𝑎 = (0g𝐾) ↔ 𝑎 = (0g𝐿)))
4541, 44imbi12d 348 . . . . . 6 ((𝜑𝑎𝐵) → (((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ↔ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿))))
469fveq2d 6649 . . . . . . . . . . . 12 (𝜑 → (*𝑟‘(Scalar‘𝐾)) = (*𝑟‘(Scalar‘𝐿)))
4746adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (*𝑟‘(Scalar‘𝐾)) = (*𝑟‘(Scalar‘𝐿)))
4811oveqrspc2v 7162 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(·𝑖𝐾)𝑏) = (𝑎(·𝑖𝐿)𝑏))
4947, 48fveq12d 6652 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)))
5049anassrs 471 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)))
5150, 13eqeq12d 2814 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5251ralbidva 3161 . . . . . . 7 ((𝜑𝑎𝐵) → (∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5315raleqdv 3364 . . . . . . 7 ((𝜑𝑎𝐵) → (∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)))
5417raleqdv 3364 . . . . . . 7 ((𝜑𝑎𝐵) → (∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5552, 53, 543bitr3d 312 . . . . . 6 ((𝜑𝑎𝐵) → (∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5636, 45, 553anbi123d 1433 . . . . 5 ((𝜑𝑎𝐵) → (((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
5756ralbidva 3161 . . . 4 (𝜑 → (∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
581raleqdv 3364 . . . 4 (𝜑 → (∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎))))
592raleqdv 3364 . . . 4 (𝜑 → (∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)) ↔ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
6057, 58, 593bitr3d 312 . . 3 (𝜑 → (∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
618, 10, 603anbi123d 1433 . 2 (𝜑 → ((𝐾 ∈ LVec ∧ (Scalar‘𝐾) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎))) ↔ (𝐿 ∈ LVec ∧ (Scalar‘𝐿) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))))
62 eqid 2798 . . 3 (Base‘𝐾) = (Base‘𝐾)
63 eqid 2798 . . 3 (Scalar‘𝐾) = (Scalar‘𝐾)
64 eqid 2798 . . 3 (·𝑖𝐾) = (·𝑖𝐾)
65 eqid 2798 . . 3 (0g𝐾) = (0g𝐾)
66 eqid 2798 . . 3 (*𝑟‘(Scalar‘𝐾)) = (*𝑟‘(Scalar‘𝐾))
67 eqid 2798 . . 3 (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐾))
6862, 63, 64, 65, 66, 67isphl 20317 . 2 (𝐾 ∈ PreHil ↔ (𝐾 ∈ LVec ∧ (Scalar‘𝐾) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎))))
69 eqid 2798 . . 3 (Base‘𝐿) = (Base‘𝐿)
70 eqid 2798 . . 3 (Scalar‘𝐿) = (Scalar‘𝐿)
71 eqid 2798 . . 3 (·𝑖𝐿) = (·𝑖𝐿)
72 eqid 2798 . . 3 (0g𝐿) = (0g𝐿)
73 eqid 2798 . . 3 (*𝑟‘(Scalar‘𝐿)) = (*𝑟‘(Scalar‘𝐿))
74 eqid 2798 . . 3 (0g‘(Scalar‘𝐿)) = (0g‘(Scalar‘𝐿))
7569, 70, 71, 72, 73, 74isphl 20317 . 2 (𝐿 ∈ PreHil ↔ (𝐿 ∈ LVec ∧ (Scalar‘𝐿) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
7661, 68, 753bitr4g 317 1 (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cmpt 5110  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  *𝑟cstv 16559  Scalarcsca 16560   ·𝑠 cvsca 16561  ·𝑖cip 16562  0gc0g 16705  *-Ringcsr 19608   LMHom clmhm 19784  LVecclvec 19867  ringLModcrglmod 19934  PreHilcphl 20313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-phl 20315
This theorem is referenced by:  tcphphl  23831
  Copyright terms: Public domain W3C validator