MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlpropd Structured version   Visualization version   GIF version

Theorem phlpropd 21615
Description: If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlpropd.1 (𝜑𝐵 = (Base‘𝐾))
phlpropd.2 (𝜑𝐵 = (Base‘𝐿))
phlpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
phlpropd.4 (𝜑𝐹 = (Scalar‘𝐾))
phlpropd.5 (𝜑𝐹 = (Scalar‘𝐿))
phlpropd.6 𝑃 = (Base‘𝐹)
phlpropd.7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
phlpropd.8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(·𝑖𝐾)𝑦) = (𝑥(·𝑖𝐿)𝑦))
Assertion
Ref Expression
phlpropd (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦

Proof of Theorem phlpropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phlpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 phlpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 phlpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 phlpropd.4 . . . 4 (𝜑𝐹 = (Scalar‘𝐾))
5 phlpropd.5 . . . 4 (𝜑𝐹 = (Scalar‘𝐿))
6 phlpropd.6 . . . 4 𝑃 = (Base‘𝐹)
7 phlpropd.7 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
81, 2, 3, 4, 5, 6, 7lvecpropd 21128 . . 3 (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
94, 5eqtr3d 2772 . . . 4 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
109eleq1d 2819 . . 3 (𝜑 → ((Scalar‘𝐾) ∈ *-Ring ↔ (Scalar‘𝐿) ∈ *-Ring))
11 phlpropd.8 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(·𝑖𝐾)𝑦) = (𝑥(·𝑖𝐿)𝑦))
1211oveqrspc2v 7432 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑎𝐵)) → (𝑏(·𝑖𝐾)𝑎) = (𝑏(·𝑖𝐿)𝑎))
1312anass1rs 655 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑏(·𝑖𝐾)𝑎) = (𝑏(·𝑖𝐿)𝑎))
1413mpteq2dva 5214 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑏𝐵 ↦ (𝑏(·𝑖𝐾)𝑎)) = (𝑏𝐵 ↦ (𝑏(·𝑖𝐿)𝑎)))
151adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝐾))
1615mpteq1d 5210 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑏𝐵 ↦ (𝑏(·𝑖𝐾)𝑎)) = (𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)))
172adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝐿))
1817mpteq1d 5210 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑏𝐵 ↦ (𝑏(·𝑖𝐿)𝑎)) = (𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)))
1914, 16, 183eqtr3d 2778 . . . . . . 7 ((𝜑𝑎𝐵) → (𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) = (𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)))
20 rlmbas 21151 . . . . . . . . . . . 12 (Base‘𝐹) = (Base‘(ringLMod‘𝐹))
216, 20eqtri 2758 . . . . . . . . . . 11 𝑃 = (Base‘(ringLMod‘𝐹))
2221a1i 11 . . . . . . . . . 10 (𝜑𝑃 = (Base‘(ringLMod‘𝐹)))
23 fvex 6889 . . . . . . . . . . . 12 (Scalar‘𝐾) ∈ V
244, 23eqeltrdi 2842 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
25 rlmsca 21156 . . . . . . . . . . 11 (𝐹 ∈ V → 𝐹 = (Scalar‘(ringLMod‘𝐹)))
2624, 25syl 17 . . . . . . . . . 10 (𝜑𝐹 = (Scalar‘(ringLMod‘𝐹)))
27 eqidd 2736 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g‘(ringLMod‘𝐹))𝑦) = (𝑥(+g‘(ringLMod‘𝐹))𝑦))
28 eqidd 2736 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐹))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐹))𝑦))
291, 22, 2, 22, 4, 26, 5, 26, 6, 6, 3, 27, 7, 28lmhmpropd 21031 . . . . . . . . 9 (𝜑 → (𝐾 LMHom (ringLMod‘𝐹)) = (𝐿 LMHom (ringLMod‘𝐹)))
304fveq2d 6880 . . . . . . . . . 10 (𝜑 → (ringLMod‘𝐹) = (ringLMod‘(Scalar‘𝐾)))
3130oveq2d 7421 . . . . . . . . 9 (𝜑 → (𝐾 LMHom (ringLMod‘𝐹)) = (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))))
325fveq2d 6880 . . . . . . . . . 10 (𝜑 → (ringLMod‘𝐹) = (ringLMod‘(Scalar‘𝐿)))
3332oveq2d 7421 . . . . . . . . 9 (𝜑 → (𝐿 LMHom (ringLMod‘𝐹)) = (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))))
3429, 31, 333eqtr3d 2778 . . . . . . . 8 (𝜑 → (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) = (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))))
3534adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) = (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))))
3619, 35eleq12d 2828 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ↔ (𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿)))))
3711oveqrspc2v 7432 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑎𝐵)) → (𝑎(·𝑖𝐾)𝑎) = (𝑎(·𝑖𝐿)𝑎))
3837anabsan2 674 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎(·𝑖𝐾)𝑎) = (𝑎(·𝑖𝐿)𝑎))
399fveq2d 6880 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
4039adantr 480 . . . . . . . 8 ((𝜑𝑎𝐵) → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
4138, 40eqeq12d 2751 . . . . . . 7 ((𝜑𝑎𝐵) → ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) ↔ (𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿))))
421, 2, 3grpidpropd 18640 . . . . . . . . 9 (𝜑 → (0g𝐾) = (0g𝐿))
4342adantr 480 . . . . . . . 8 ((𝜑𝑎𝐵) → (0g𝐾) = (0g𝐿))
4443eqeq2d 2746 . . . . . . 7 ((𝜑𝑎𝐵) → (𝑎 = (0g𝐾) ↔ 𝑎 = (0g𝐿)))
4541, 44imbi12d 344 . . . . . 6 ((𝜑𝑎𝐵) → (((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ↔ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿))))
469fveq2d 6880 . . . . . . . . . . . 12 (𝜑 → (*𝑟‘(Scalar‘𝐾)) = (*𝑟‘(Scalar‘𝐿)))
4746adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (*𝑟‘(Scalar‘𝐾)) = (*𝑟‘(Scalar‘𝐿)))
4811oveqrspc2v 7432 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(·𝑖𝐾)𝑏) = (𝑎(·𝑖𝐿)𝑏))
4947, 48fveq12d 6883 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)))
5049anassrs 467 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)))
5150, 13eqeq12d 2751 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5251ralbidva 3161 . . . . . . 7 ((𝜑𝑎𝐵) → (∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5315raleqdv 3305 . . . . . . 7 ((𝜑𝑎𝐵) → (∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)))
5417raleqdv 3305 . . . . . . 7 ((𝜑𝑎𝐵) → (∀𝑏𝐵 ((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5552, 53, 543bitr3d 309 . . . . . 6 ((𝜑𝑎𝐵) → (∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))
5636, 45, 553anbi123d 1438 . . . . 5 ((𝜑𝑎𝐵) → (((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
5756ralbidva 3161 . . . 4 (𝜑 → (∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
581raleqdv 3305 . . . 4 (𝜑 → (∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎))))
592raleqdv 3305 . . . 4 (𝜑 → (∀𝑎𝐵 ((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)) ↔ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
6057, 58, 593bitr3d 309 . . 3 (𝜑 → (∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎)) ↔ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
618, 10, 603anbi123d 1438 . 2 (𝜑 → ((𝐾 ∈ LVec ∧ (Scalar‘𝐾) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎))) ↔ (𝐿 ∈ LVec ∧ (Scalar‘𝐿) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎)))))
62 eqid 2735 . . 3 (Base‘𝐾) = (Base‘𝐾)
63 eqid 2735 . . 3 (Scalar‘𝐾) = (Scalar‘𝐾)
64 eqid 2735 . . 3 (·𝑖𝐾) = (·𝑖𝐾)
65 eqid 2735 . . 3 (0g𝐾) = (0g𝐾)
66 eqid 2735 . . 3 (*𝑟‘(Scalar‘𝐾)) = (*𝑟‘(Scalar‘𝐾))
67 eqid 2735 . . 3 (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐾))
6862, 63, 64, 65, 66, 67isphl 21588 . 2 (𝐾 ∈ PreHil ↔ (𝐾 ∈ LVec ∧ (Scalar‘𝐾) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐾)((𝑏 ∈ (Base‘𝐾) ↦ (𝑏(·𝑖𝐾)𝑎)) ∈ (𝐾 LMHom (ringLMod‘(Scalar‘𝐾))) ∧ ((𝑎(·𝑖𝐾)𝑎) = (0g‘(Scalar‘𝐾)) → 𝑎 = (0g𝐾)) ∧ ∀𝑏 ∈ (Base‘𝐾)((*𝑟‘(Scalar‘𝐾))‘(𝑎(·𝑖𝐾)𝑏)) = (𝑏(·𝑖𝐾)𝑎))))
69 eqid 2735 . . 3 (Base‘𝐿) = (Base‘𝐿)
70 eqid 2735 . . 3 (Scalar‘𝐿) = (Scalar‘𝐿)
71 eqid 2735 . . 3 (·𝑖𝐿) = (·𝑖𝐿)
72 eqid 2735 . . 3 (0g𝐿) = (0g𝐿)
73 eqid 2735 . . 3 (*𝑟‘(Scalar‘𝐿)) = (*𝑟‘(Scalar‘𝐿))
74 eqid 2735 . . 3 (0g‘(Scalar‘𝐿)) = (0g‘(Scalar‘𝐿))
7569, 70, 71, 72, 73, 74isphl 21588 . 2 (𝐿 ∈ PreHil ↔ (𝐿 ∈ LVec ∧ (Scalar‘𝐿) ∈ *-Ring ∧ ∀𝑎 ∈ (Base‘𝐿)((𝑏 ∈ (Base‘𝐿) ↦ (𝑏(·𝑖𝐿)𝑎)) ∈ (𝐿 LMHom (ringLMod‘(Scalar‘𝐿))) ∧ ((𝑎(·𝑖𝐿)𝑎) = (0g‘(Scalar‘𝐿)) → 𝑎 = (0g𝐿)) ∧ ∀𝑏 ∈ (Base‘𝐿)((*𝑟‘(Scalar‘𝐿))‘(𝑎(·𝑖𝐿)𝑏)) = (𝑏(·𝑖𝐿)𝑎))))
7661, 68, 753bitr4g 314 1 (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cmpt 5201  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  *𝑟cstv 17273  Scalarcsca 17274   ·𝑠 cvsca 17275  ·𝑖cip 17276  0gc0g 17453  *-Ringcsr 20798   LMHom clmhm 20977  LVecclvec 21060  ringLModcrglmod 21130  PreHilcphl 21584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-sca 17287  df-vsca 17288  df-ip 17289  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-ghm 19196  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lmhm 20980  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-phl 21586
This theorem is referenced by:  tcphphl  25179
  Copyright terms: Public domain W3C validator