![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 28416 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsdi.a | ⊢ + = (+g‘𝑊) |
lmodvsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
lmodvsdi | ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdi.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodvsdi.a | . . . . . . . . 9 ⊢ + = (+g‘𝑊) | |
3 | lmodvsdi.s | . . . . . . . . 9 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsdi.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsdi.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2825 | . . . . . . . . 9 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2825 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2825 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 19231 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simpld 490 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)))) |
11 | 10 | simp2d 1177 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
12 | 11 | 3expia 1154 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
13 | 12 | anabsan2 664 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
14 | 13 | exp4b 423 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑌 ∈ 𝑉 → (𝑋 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
15 | 14 | com34 91 | . 2 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → (𝑌 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
16 | 15 | 3imp2 1462 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 .rcmulr 16313 Scalarcsca 16315 ·𝑠 cvsca 16316 1rcur 18862 LModclmod 19226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5015 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-iota 6090 df-fv 6135 df-ov 6913 df-lmod 19228 |
This theorem is referenced by: lmodcom 19272 lmodsubdi 19283 lmodvsghm 19287 islss3 19325 prdslmodd 19335 lmodvsinv2 19403 lmhmplusg 19410 lsmcl 19449 pj1lmhm 19466 lspfixed 19494 lspfixedOLD 19495 lspsolvlem 19509 clmvsdi 23268 cvsi 23306 lshpkrlem4 35183 baerlem5alem1 37778 baerlem5blem1 37779 hdmap14lem8 37945 mendlmod 38601 lmodvsmdi 43024 |
Copyright terms: Public domain | W3C validator |