Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 29271 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsdi.a | ⊢ + = (+g‘𝑊) |
lmodvsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
lmodvsdi | ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdi.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodvsdi.a | . . . . . . . . 9 ⊢ + = (+g‘𝑊) | |
3 | lmodvsdi.s | . . . . . . . . 9 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsdi.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsdi.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2738 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20043 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simpld 494 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)))) |
11 | 10 | simp2d 1141 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
12 | 11 | 3expia 1119 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
13 | 12 | anabsan2 670 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
14 | 13 | exp4b 430 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑌 ∈ 𝑉 → (𝑋 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
15 | 14 | com34 91 | . 2 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → (𝑌 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
16 | 15 | 3imp2 1347 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 1rcur 19652 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-lmod 20040 |
This theorem is referenced by: lmodcom 20084 lmodsubdi 20095 lmodvsghm 20099 islss3 20136 prdslmodd 20146 lmodvsinv2 20214 lmhmplusg 20221 lsmcl 20260 pj1lmhm 20277 lspfixed 20305 lspsolvlem 20319 clmvsdi 24161 cvsi 24199 eqgvscpbl 31452 imaslmod 31455 lshpkrlem4 37054 baerlem5alem1 39649 baerlem5blem1 39650 hdmap14lem8 39816 mendlmod 40934 lmodvsmdi 45606 |
Copyright terms: Public domain | W3C validator |