| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 30989 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsdi.a | ⊢ + = (+g‘𝑊) |
| lmodvsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsdi | ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdi.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodvsdi.a | . . . . . . . . 9 ⊢ + = (+g‘𝑊) | |
| 3 | lmodvsdi.s | . . . . . . . . 9 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsdi.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsdi.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | eqid 2735 | . . . . . . . . 9 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2735 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2735 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20822 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simpld 494 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)))) |
| 11 | 10 | simp2d 1143 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| 12 | 11 | 3expia 1121 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
| 13 | 12 | anabsan2 674 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
| 14 | 13 | exp4b 430 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑌 ∈ 𝑉 → (𝑋 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
| 15 | 14 | com34 91 | . 2 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → (𝑌 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
| 16 | 15 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 1rcur 20141 LModclmod 20817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-lmod 20819 |
| This theorem is referenced by: lmodcom 20865 lmodsubdi 20876 lmodvsghm 20880 islss3 20916 prdslmodd 20926 lmodvsinv2 20995 lmhmplusg 21002 lsmcl 21041 pj1lmhm 21058 lspfixed 21089 lspsolvlem 21103 clmvsdi 25043 cvsi 25081 eqgvscpbl 33365 imaslmod 33368 lshpkrlem4 39131 baerlem5alem1 41727 baerlem5blem1 41728 hdmap14lem8 41894 mendlmod 43213 lmodvsmdi 48354 |
| Copyright terms: Public domain | W3C validator |