MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdi Structured version   Visualization version   GIF version

Theorem lmodvsdi 20806
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 30970 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdi.v 𝑉 = (Base‘𝑊)
lmodvsdi.a + = (+g𝑊)
lmodvsdi.f 𝐹 = (Scalar‘𝑊)
lmodvsdi.s · = ( ·𝑠𝑊)
lmodvsdi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))

Proof of Theorem lmodvsdi
StepHypRef Expression
1 lmodvsdi.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
2 lmodvsdi.a . . . . . . . . 9 + = (+g𝑊)
3 lmodvsdi.s . . . . . . . . 9 · = ( ·𝑠𝑊)
4 lmodvsdi.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
5 lmodvsdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
6 eqid 2729 . . . . . . . . 9 (+g𝐹) = (+g𝐹)
7 eqid 2729 . . . . . . . . 9 (.r𝐹) = (.r𝐹)
8 eqid 2729 . . . . . . . . 9 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 20786 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 494 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))))
1110simp2d 1143 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
12113expia 1121 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾)) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1312anabsan2 674 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1413exp4b 430 . . 3 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑌𝑉 → (𝑋𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
1514com34 91 . 2 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑋𝑉 → (𝑌𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
16153imp2 1350 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  1rcur 20084  LModclmod 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-lmod 20783
This theorem is referenced by:  lmodcom  20829  lmodsubdi  20840  lmodvsghm  20844  islss3  20880  prdslmodd  20890  lmodvsinv2  20959  lmhmplusg  20966  lsmcl  21005  pj1lmhm  21022  lspfixed  21053  lspsolvlem  21067  clmvsdi  25008  cvsi  25046  eqgvscpbl  33297  imaslmod  33300  lshpkrlem4  39091  baerlem5alem1  41687  baerlem5blem1  41688  hdmap14lem8  41854  mendlmod  43162  lmodvsmdi  48364
  Copyright terms: Public domain W3C validator