MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem7 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem7 18170
Description: Lemma 7 for funcestrcsetc 18173. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem7 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem7
StepHypRef Expression
1 funcestrcsetc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . . . 5 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
8 eqid 2726 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
91, 2, 3, 4, 5, 6, 7, 8, 8funcestrcsetclem5 18168 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑋𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋))))
109anabsan2 672 . . 3 ((𝜑𝑋𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋))))
11 eqid 2726 . . . 4 (Id‘𝐸) = (Id‘𝐸)
125adantr 479 . . . 4 ((𝜑𝑋𝐵) → 𝑈 ∈ WUni)
131, 5estrcbas 18148 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
143, 13eqtr4id 2785 . . . . . 6 (𝜑𝐵 = 𝑈)
1514eleq2d 2812 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
1615biimpa 475 . . . 4 ((𝜑𝑋𝐵) → 𝑋𝑈)
171, 11, 12, 16estrcid 18157 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋)))
1810, 17fveq12d 6908 . 2 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))))
19 fvex 6914 . . . . 5 (Base‘𝑋) ∈ V
2019, 19pm3.2i 469 . . . 4 ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)
2120a1i 11 . . 3 ((𝜑𝑋𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V))
22 f1oi 6881 . . . . 5 ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋)
23 f1of 6843 . . . . 5 (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))
2422, 23ax-mp 5 . . . 4 ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)
25 elmapg 8868 . . . 4 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)))
2624, 25mpbiri 257 . . 3 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)))
27 fvresi 7187 . . 3 (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
2821, 26, 273syl 18 . 2 ((𝜑𝑋𝐵) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
291, 2, 3, 4, 5, 6funcestrcsetclem1 18164 . . . 4 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
3029fveq2d 6905 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(𝐹𝑋)) = ((Id‘𝑆)‘(Base‘𝑋)))
31 eqid 2726 . . . 4 (Id‘𝑆) = (Id‘𝑆)
321, 3, 5estrcbasbas 18154 . . . 4 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ 𝑈)
332, 31, 12, 32setcid 18108 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋)))
3430, 33eqtr2d 2767 . 2 ((𝜑𝑋𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
3518, 28, 343eqtrd 2770 1 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cmpt 5236   I cid 5579  cres 5684  wf 6550  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  cmpo 7426  m cmap 8855  WUnicwun 10743  Basecbs 17213  Idccid 17678  SetCatcsetc 18097  ExtStrCatcestrc 18145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-wun 10745  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-slot 17184  df-ndx 17196  df-base 17214  df-hom 17290  df-cco 17291  df-cat 17681  df-cid 17682  df-setc 18098  df-estrc 18146
This theorem is referenced by:  funcestrcsetc  18173
  Copyright terms: Public domain W3C validator