MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem7 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem7 18114
Description: Lemma 7 for funcestrcsetc 18117. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem7 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem7
StepHypRef Expression
1 funcestrcsetc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . . . 5 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
8 eqid 2730 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
91, 2, 3, 4, 5, 6, 7, 8, 8funcestrcsetclem5 18112 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑋𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋))))
109anabsan2 674 . . 3 ((𝜑𝑋𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋))))
11 eqid 2730 . . . 4 (Id‘𝐸) = (Id‘𝐸)
125adantr 480 . . . 4 ((𝜑𝑋𝐵) → 𝑈 ∈ WUni)
131, 5estrcbas 18093 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
143, 13eqtr4id 2784 . . . . . 6 (𝜑𝐵 = 𝑈)
1514eleq2d 2815 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
1615biimpa 476 . . . 4 ((𝜑𝑋𝐵) → 𝑋𝑈)
171, 11, 12, 16estrcid 18102 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋)))
1810, 17fveq12d 6868 . 2 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))))
19 fvex 6874 . . . . 5 (Base‘𝑋) ∈ V
2019, 19pm3.2i 470 . . . 4 ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)
2120a1i 11 . . 3 ((𝜑𝑋𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V))
22 f1oi 6841 . . . . 5 ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋)
23 f1of 6803 . . . . 5 (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))
2422, 23ax-mp 5 . . . 4 ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)
25 elmapg 8815 . . . 4 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)))
2624, 25mpbiri 258 . . 3 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)))
27 fvresi 7150 . . 3 (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
2821, 26, 273syl 18 . 2 ((𝜑𝑋𝐵) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
291, 2, 3, 4, 5, 6funcestrcsetclem1 18108 . . . 4 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
3029fveq2d 6865 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(𝐹𝑋)) = ((Id‘𝑆)‘(Base‘𝑋)))
31 eqid 2730 . . . 4 (Id‘𝑆) = (Id‘𝑆)
321, 3, 5estrcbasbas 18099 . . . 4 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ 𝑈)
332, 31, 12, 32setcid 18055 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋)))
3430, 33eqtr2d 2766 . 2 ((𝜑𝑋𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
3518, 28, 343eqtrd 2769 1 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191   I cid 5535  cres 5643  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  WUnicwun 10660  Basecbs 17186  Idccid 17633  SetCatcsetc 18044  ExtStrCatcestrc 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-wun 10662  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-setc 18045  df-estrc 18091
This theorem is referenced by:  funcestrcsetc  18117
  Copyright terms: Public domain W3C validator