![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcestrcsetc 17228. (Contributed by AV, 23-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))) |
Ref | Expression |
---|---|
funcestrcsetclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
2 | funcestrcsetc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcestrcsetc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
4 | funcestrcsetc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcestrcsetc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcestrcsetc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcestrcsetc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))) | |
8 | eqid 2795 | . . . . 5 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8, 8 | funcestrcsetclem5 17223 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))) |
10 | 9 | anabsan2 670 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))) |
11 | eqid 2795 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
12 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
13 | 1, 5 | estrcbas 17204 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
14 | 13, 3 | syl6reqr 2850 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝑈) |
15 | 14 | eleq2d 2868 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈)) |
16 | 15 | biimpa 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝑈) |
17 | 1, 11, 12, 16 | estrcid 17213 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋))) |
18 | 10, 17 | fveq12d 6545 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))‘( I ↾ (Base‘𝑋)))) |
19 | fvex 6551 | . . . . 5 ⊢ (Base‘𝑋) ∈ V | |
20 | 19, 19 | pm3.2i 471 | . . . 4 ⊢ ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)) |
22 | f1oi 6520 | . . . . 5 ⊢ ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) | |
23 | f1of 6483 | . . . . 5 ⊢ (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)) | |
24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋) |
25 | elmapg 8269 | . . . 4 ⊢ (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))) | |
26 | 24, 25 | mpbiri 259 | . . 3 ⊢ (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑𝑚 (Base‘𝑋))) |
27 | fvresi 6798 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
28 | 21, 26, 27 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
29 | 1, 2, 3, 4, 5, 6 | funcestrcsetclem1 17219 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
30 | 29 | fveq2d 6542 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
31 | eqid 2795 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
32 | 1, 3, 5 | estrcbasbas 17210 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
33 | 2, 31, 12, 32 | setcid 17175 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
34 | 30, 33 | eqtr2d 2832 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
35 | 18, 28, 34 | 3eqtrd 2835 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ↦ cmpt 5041 I cid 5347 ↾ cres 5445 ⟶wf 6221 –1-1-onto→wf1o 6224 ‘cfv 6225 (class class class)co 7016 ∈ cmpo 7018 ↑𝑚 cmap 8256 WUnicwun 9968 Basecbs 16312 Idccid 16765 SetCatcsetc 17164 ExtStrCatcestrc 17201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-wun 9970 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-hom 16418 df-cco 16419 df-cat 16768 df-cid 16769 df-setc 17165 df-estrc 17202 |
This theorem is referenced by: funcestrcsetc 17228 |
Copyright terms: Public domain | W3C validator |