MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem7 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem7 18215
Description: Lemma 7 for funcestrcsetc 18218. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem7 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem7
StepHypRef Expression
1 funcestrcsetc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . . . 5 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
8 eqid 2740 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
91, 2, 3, 4, 5, 6, 7, 8, 8funcestrcsetclem5 18213 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑋𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋))))
109anabsan2 673 . . 3 ((𝜑𝑋𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋))))
11 eqid 2740 . . . 4 (Id‘𝐸) = (Id‘𝐸)
125adantr 480 . . . 4 ((𝜑𝑋𝐵) → 𝑈 ∈ WUni)
131, 5estrcbas 18193 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
143, 13eqtr4id 2799 . . . . . 6 (𝜑𝐵 = 𝑈)
1514eleq2d 2830 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
1615biimpa 476 . . . 4 ((𝜑𝑋𝐵) → 𝑋𝑈)
171, 11, 12, 16estrcid 18202 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋)))
1810, 17fveq12d 6927 . 2 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))))
19 fvex 6933 . . . . 5 (Base‘𝑋) ∈ V
2019, 19pm3.2i 470 . . . 4 ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)
2120a1i 11 . . 3 ((𝜑𝑋𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V))
22 f1oi 6900 . . . . 5 ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋)
23 f1of 6862 . . . . 5 (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))
2422, 23ax-mp 5 . . . 4 ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)
25 elmapg 8897 . . . 4 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)))
2624, 25mpbiri 258 . . 3 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)))
27 fvresi 7207 . . 3 (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
2821, 26, 273syl 18 . 2 ((𝜑𝑋𝐵) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
291, 2, 3, 4, 5, 6funcestrcsetclem1 18209 . . . 4 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
3029fveq2d 6924 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(𝐹𝑋)) = ((Id‘𝑆)‘(Base‘𝑋)))
31 eqid 2740 . . . 4 (Id‘𝑆) = (Id‘𝑆)
321, 3, 5estrcbasbas 18199 . . . 4 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ 𝑈)
332, 31, 12, 32setcid 18153 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋)))
3430, 33eqtr2d 2781 . 2 ((𝜑𝑋𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
3518, 28, 343eqtrd 2784 1 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249   I cid 5592  cres 5702  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  WUnicwun 10769  Basecbs 17258  Idccid 17723  SetCatcsetc 18142  ExtStrCatcestrc 18190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-wun 10771  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-setc 18143  df-estrc 18191
This theorem is referenced by:  funcestrcsetc  18218
  Copyright terms: Public domain W3C validator