| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcestrcsetclem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for funcestrcsetc 18073. (Contributed by AV, 23-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
| funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| Ref | Expression |
|---|---|
| funcestrcsetclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 2 | funcestrcsetc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 3 | funcestrcsetc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | funcestrcsetc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 5 | funcestrcsetc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | funcestrcsetc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
| 7 | funcestrcsetc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8, 8 | funcestrcsetclem5 18068 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))) |
| 10 | 9 | anabsan2 674 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))) |
| 11 | eqid 2729 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 12 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
| 13 | 1, 5 | estrcbas 18049 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
| 14 | 3, 13 | eqtr4id 2783 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝑈) |
| 15 | 14 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| 16 | 15 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝑈) |
| 17 | 1, 11, 12, 16 | estrcid 18058 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋))) |
| 18 | 10, 17 | fveq12d 6833 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋)))) |
| 19 | fvex 6839 | . . . . 5 ⊢ (Base‘𝑋) ∈ V | |
| 20 | 19, 19 | pm3.2i 470 | . . . 4 ⊢ ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) |
| 21 | 20 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)) |
| 22 | f1oi 6806 | . . . . 5 ⊢ ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) | |
| 23 | f1of 6768 | . . . . 5 ⊢ (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)) | |
| 24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋) |
| 25 | elmapg 8773 | . . . 4 ⊢ (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))) | |
| 26 | 24, 25 | mpbiri 258 | . . 3 ⊢ (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋))) |
| 27 | fvresi 7113 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
| 28 | 21, 26, 27 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
| 29 | 1, 2, 3, 4, 5, 6 | funcestrcsetclem1 18064 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| 30 | 29 | fveq2d 6830 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
| 31 | eqid 2729 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 32 | 1, 3, 5 | estrcbasbas 18055 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
| 33 | 2, 31, 12, 32 | setcid 18011 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
| 34 | 30, 33 | eqtr2d 2765 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| 35 | 18, 28, 34 | 3eqtrd 2768 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 I cid 5517 ↾ cres 5625 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ↑m cmap 8760 WUnicwun 10613 Basecbs 17138 Idccid 17589 SetCatcsetc 18000 ExtStrCatcestrc 18046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-wun 10615 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-setc 18001 df-estrc 18047 |
| This theorem is referenced by: funcestrcsetc 18073 |
| Copyright terms: Public domain | W3C validator |