Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcestrcsetc 17866. (Contributed by AV, 23-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
Ref | Expression |
---|---|
funcestrcsetclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
2 | funcestrcsetc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcestrcsetc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
4 | funcestrcsetc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcestrcsetc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcestrcsetc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcestrcsetc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
8 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8, 8 | funcestrcsetclem5 17861 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))) |
10 | 9 | anabsan2 671 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))) |
11 | eqid 2738 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
12 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
13 | 1, 5 | estrcbas 17841 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
14 | 3, 13 | eqtr4id 2797 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝑈) |
15 | 14 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈)) |
16 | 15 | biimpa 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝑈) |
17 | 1, 11, 12, 16 | estrcid 17850 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋))) |
18 | 10, 17 | fveq12d 6781 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋)))) |
19 | fvex 6787 | . . . . 5 ⊢ (Base‘𝑋) ∈ V | |
20 | 19, 19 | pm3.2i 471 | . . . 4 ⊢ ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)) |
22 | f1oi 6754 | . . . . 5 ⊢ ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) | |
23 | f1of 6716 | . . . . 5 ⊢ (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)) | |
24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋) |
25 | elmapg 8628 | . . . 4 ⊢ (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))) | |
26 | 24, 25 | mpbiri 257 | . . 3 ⊢ (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋))) |
27 | fvresi 7045 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
28 | 21, 26, 27 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ ((Base‘𝑋) ↑m (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
29 | 1, 2, 3, 4, 5, 6 | funcestrcsetclem1 17857 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
30 | 29 | fveq2d 6778 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
31 | eqid 2738 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
32 | 1, 3, 5 | estrcbasbas 17847 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
33 | 2, 31, 12, 32 | setcid 17801 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
34 | 30, 33 | eqtr2d 2779 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
35 | 18, 28, 34 | 3eqtrd 2782 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 WUnicwun 10456 Basecbs 16912 Idccid 17374 SetCatcsetc 17790 ExtStrCatcestrc 17838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-wun 10458 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-cat 17377 df-cid 17378 df-setc 17791 df-estrc 17839 |
This theorem is referenced by: funcestrcsetc 17866 |
Copyright terms: Public domain | W3C validator |