MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem3 Structured version   Visualization version   GIF version

Theorem chpdmatlem3 21448
Description: Lemma 3 for chpdmat 21449. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))

Proof of Theorem chpdmatlem3
StepHypRef Expression
1 chpdmat.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 20880 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant2 1131 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
43adantr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝑃 ∈ Ring)
5 chpdmat.c . . . . . . 7 𝐶 = (𝑁 CharPlyMat 𝑅)
6 chpdmat.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 chpdmat.s . . . . . . 7 𝑆 = (algSc‘𝑃)
8 chpdmat.b . . . . . . 7 𝐵 = (Base‘𝐴)
9 chpdmat.x . . . . . . 7 𝑋 = (var1𝑅)
10 chpdmat.0 . . . . . . 7 0 = (0g𝑅)
11 chpdmat.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
12 chpdmat.m . . . . . . 7 = (-g𝑃)
13 chpdmatlem.q . . . . . . 7 𝑄 = (𝑁 Mat 𝑃)
14 chpdmatlem.1 . . . . . . 7 1 = (1r𝑄)
15 chpdmatlem.m . . . . . . 7 · = ( ·𝑠𝑄)
165, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chpdmatlem0 21445 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
17163adant3 1129 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
18 chpdmatlem.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
1918, 6, 8, 1, 13mat2pmatbas 21334 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
2017, 19jca 515 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)))
2120adantr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)))
22 simpr 488 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝐾𝑁)
23 eqid 2801 . . . 4 (Base‘𝑄) = (Base‘𝑄)
24 chpdmatlem.z . . . 4 𝑍 = (-g𝑄)
2513, 23, 24, 12matsubgcell 21042 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)))
264, 21, 22, 22, 25syl112anc 1371 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)))
27 eqid 2801 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
289, 1, 27vr1cl 20849 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
2928adantl 485 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
301, 13pmatring 21300 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
3123, 14ringidcl 19317 . . . . . . . . 9 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝑄))
3329, 32jca 515 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
34333adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3534adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
36 eqid 2801 . . . . . 6 (.r𝑃) = (.r𝑃)
3713, 23, 27, 15, 36matvscacell 21044 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑋 · 1 )𝐾) = (𝑋(.r𝑃)(𝐾 1 𝐾)))
384, 35, 22, 22, 37syl112anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑋 · 1 )𝐾) = (𝑋(.r𝑃)(𝐾 1 𝐾)))
39 eqid 2801 . . . . . . 7 (1r𝑃) = (1r𝑃)
40 eqid 2801 . . . . . . 7 (0g𝑃) = (0g𝑃)
41 simpl1 1188 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
4213, 39, 40, 41, 4, 22, 22, 14mat1ov 21056 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾 1 𝐾) = if(𝐾 = 𝐾, (1r𝑃), (0g𝑃)))
43 eqid 2801 . . . . . . 7 𝐾 = 𝐾
4443iftruei 4435 . . . . . 6 if(𝐾 = 𝐾, (1r𝑃), (0g𝑃)) = (1r𝑃)
4542, 44eqtrdi 2852 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾 1 𝐾) = (1r𝑃))
4645oveq2d 7155 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋(.r𝑃)(𝐾 1 𝐾)) = (𝑋(.r𝑃)(1r𝑃)))
472, 28jca 515 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
48473ad2ant2 1131 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
4927, 36, 39ringridm 19321 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5048, 49syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5150adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5238, 46, 513eqtrd 2840 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑋 · 1 )𝐾) = 𝑋)
5318, 6, 8, 1, 7mat2pmatvalel 21333 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑇𝑀)𝐾) = (𝑆‘(𝐾𝑀𝐾)))
5453anabsan2 673 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑇𝑀)𝐾) = (𝑆‘(𝐾𝑀𝐾)))
5552, 54oveq12d 7157 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))
5626, 55eqtrd 2836 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  ifcif 4428  cfv 6328  (class class class)co 7139  Fincfn 8496  Basecbs 16478  .rcmulr 16561   ·𝑠 cvsca 16564  0gc0g 16708  -gcsg 18100  mulGrpcmgp 19235  1rcur 19247  Ringcrg 19293  algSccascl 20544  var1cv1 20808  Poly1cpl1 20809   Mat cmat 21015   matToPolyMat cmat2pmat 21312   CharPlyMat cchpmat 21434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-dsmm 20424  df-frlm 20439  df-ascl 20547  df-psr 20597  df-mvr 20598  df-mpl 20599  df-opsr 20601  df-psr1 20812  df-vr1 20813  df-ply1 20814  df-mamu 20994  df-mat 21016  df-mat2pmat 21315
This theorem is referenced by:  chpdmat  21449
  Copyright terms: Public domain W3C validator