MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem3 Structured version   Visualization version   GIF version

Theorem chpdmatlem3 22189
Description: Lemma 3 for chpdmat 22190. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))

Proof of Theorem chpdmatlem3
StepHypRef Expression
1 chpdmat.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 21619 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant2 1134 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
43adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝑃 ∈ Ring)
5 chpdmat.c . . . . . . 7 𝐶 = (𝑁 CharPlyMat 𝑅)
6 chpdmat.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 chpdmat.s . . . . . . 7 𝑆 = (algSc‘𝑃)
8 chpdmat.b . . . . . . 7 𝐵 = (Base‘𝐴)
9 chpdmat.x . . . . . . 7 𝑋 = (var1𝑅)
10 chpdmat.0 . . . . . . 7 0 = (0g𝑅)
11 chpdmat.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
12 chpdmat.m . . . . . . 7 = (-g𝑃)
13 chpdmatlem.q . . . . . . 7 𝑄 = (𝑁 Mat 𝑃)
14 chpdmatlem.1 . . . . . . 7 1 = (1r𝑄)
15 chpdmatlem.m . . . . . . 7 · = ( ·𝑠𝑄)
165, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chpdmatlem0 22186 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
17163adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
18 chpdmatlem.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
1918, 6, 8, 1, 13mat2pmatbas 22075 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
2017, 19jca 512 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)))
2120adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)))
22 simpr 485 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝐾𝑁)
23 eqid 2736 . . . 4 (Base‘𝑄) = (Base‘𝑄)
24 chpdmatlem.z . . . 4 𝑍 = (-g𝑄)
2513, 23, 24, 12matsubgcell 21783 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)))
264, 21, 22, 22, 25syl112anc 1374 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)))
27 eqid 2736 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
289, 1, 27vr1cl 21588 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
2928adantl 482 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
301, 13pmatring 22041 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
3123, 14ringidcl 19989 . . . . . . . . 9 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝑄))
3329, 32jca 512 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
34333adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3534adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
36 eqid 2736 . . . . . 6 (.r𝑃) = (.r𝑃)
3713, 23, 27, 15, 36matvscacell 21785 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑋 · 1 )𝐾) = (𝑋(.r𝑃)(𝐾 1 𝐾)))
384, 35, 22, 22, 37syl112anc 1374 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑋 · 1 )𝐾) = (𝑋(.r𝑃)(𝐾 1 𝐾)))
39 eqid 2736 . . . . . . 7 (1r𝑃) = (1r𝑃)
40 eqid 2736 . . . . . . 7 (0g𝑃) = (0g𝑃)
41 simpl1 1191 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
4213, 39, 40, 41, 4, 22, 22, 14mat1ov 21797 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾 1 𝐾) = if(𝐾 = 𝐾, (1r𝑃), (0g𝑃)))
43 eqid 2736 . . . . . . 7 𝐾 = 𝐾
4443iftruei 4493 . . . . . 6 if(𝐾 = 𝐾, (1r𝑃), (0g𝑃)) = (1r𝑃)
4542, 44eqtrdi 2792 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾 1 𝐾) = (1r𝑃))
4645oveq2d 7373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋(.r𝑃)(𝐾 1 𝐾)) = (𝑋(.r𝑃)(1r𝑃)))
472, 28jca 512 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
48473ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
4927, 36, 39ringridm 19993 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5048, 49syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5150adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5238, 46, 513eqtrd 2780 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑋 · 1 )𝐾) = 𝑋)
5318, 6, 8, 1, 7mat2pmatvalel 22074 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑇𝑀)𝐾) = (𝑆‘(𝐾𝑀𝐾)))
5453anabsan2 672 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑇𝑀)𝐾) = (𝑆‘(𝐾𝑀𝐾)))
5552, 54oveq12d 7375 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))
5626, 55eqtrd 2776 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ifcif 4486  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  .rcmulr 17134   ·𝑠 cvsca 17137  0gc0g 17321  -gcsg 18750  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  algSccascl 21258  var1cv1 21547  Poly1cpl1 21548   Mat cmat 21754   matToPolyMat cmat2pmat 22053   CharPlyMat cchpmat 22175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-mamu 21733  df-mat 21755  df-mat2pmat 22056
This theorem is referenced by:  chpdmat  22190
  Copyright terms: Public domain W3C validator