MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem3 Structured version   Visualization version   GIF version

Theorem chpdmatlem3 22095
Description: Lemma 3 for chpdmat 22096. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))

Proof of Theorem chpdmatlem3
StepHypRef Expression
1 chpdmat.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 21525 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant2 1134 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
43adantr 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝑃 ∈ Ring)
5 chpdmat.c . . . . . . 7 𝐶 = (𝑁 CharPlyMat 𝑅)
6 chpdmat.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 chpdmat.s . . . . . . 7 𝑆 = (algSc‘𝑃)
8 chpdmat.b . . . . . . 7 𝐵 = (Base‘𝐴)
9 chpdmat.x . . . . . . 7 𝑋 = (var1𝑅)
10 chpdmat.0 . . . . . . 7 0 = (0g𝑅)
11 chpdmat.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
12 chpdmat.m . . . . . . 7 = (-g𝑃)
13 chpdmatlem.q . . . . . . 7 𝑄 = (𝑁 Mat 𝑃)
14 chpdmatlem.1 . . . . . . 7 1 = (1r𝑄)
15 chpdmatlem.m . . . . . . 7 · = ( ·𝑠𝑄)
165, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chpdmatlem0 22092 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
17163adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
18 chpdmatlem.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
1918, 6, 8, 1, 13mat2pmatbas 21981 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
2017, 19jca 513 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)))
2120adantr 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)))
22 simpr 486 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝐾𝑁)
23 eqid 2737 . . . 4 (Base‘𝑄) = (Base‘𝑄)
24 chpdmatlem.z . . . 4 𝑍 = (-g𝑄)
2513, 23, 24, 12matsubgcell 21689 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)))
264, 21, 22, 22, 25syl112anc 1374 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)))
27 eqid 2737 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
289, 1, 27vr1cl 21494 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
2928adantl 483 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
301, 13pmatring 21947 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
3123, 14ringidcl 19902 . . . . . . . . 9 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝑄))
3329, 32jca 513 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
34333adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3534adantr 482 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
36 eqid 2737 . . . . . 6 (.r𝑃) = (.r𝑃)
3713, 23, 27, 15, 36matvscacell 21691 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑋 · 1 )𝐾) = (𝑋(.r𝑃)(𝐾 1 𝐾)))
384, 35, 22, 22, 37syl112anc 1374 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑋 · 1 )𝐾) = (𝑋(.r𝑃)(𝐾 1 𝐾)))
39 eqid 2737 . . . . . . 7 (1r𝑃) = (1r𝑃)
40 eqid 2737 . . . . . . 7 (0g𝑃) = (0g𝑃)
41 simpl1 1191 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
4213, 39, 40, 41, 4, 22, 22, 14mat1ov 21703 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾 1 𝐾) = if(𝐾 = 𝐾, (1r𝑃), (0g𝑃)))
43 eqid 2737 . . . . . . 7 𝐾 = 𝐾
4443iftruei 4485 . . . . . 6 if(𝐾 = 𝐾, (1r𝑃), (0g𝑃)) = (1r𝑃)
4542, 44eqtrdi 2793 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾 1 𝐾) = (1r𝑃))
4645oveq2d 7358 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋(.r𝑃)(𝐾 1 𝐾)) = (𝑋(.r𝑃)(1r𝑃)))
472, 28jca 513 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
48473ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
4927, 36, 39ringridm 19906 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5048, 49syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5150adantr 482 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
5238, 46, 513eqtrd 2781 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑋 · 1 )𝐾) = 𝑋)
5318, 6, 8, 1, 7mat2pmatvalel 21980 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑇𝑀)𝐾) = (𝑆‘(𝐾𝑀𝐾)))
5453anabsan2 672 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾(𝑇𝑀)𝐾) = (𝑆‘(𝐾𝑀𝐾)))
5552, 54oveq12d 7360 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → ((𝐾(𝑋 · 1 )𝐾) (𝐾(𝑇𝑀)𝐾)) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))
5626, 55eqtrd 2777 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  ifcif 4478  cfv 6484  (class class class)co 7342  Fincfn 8809  Basecbs 17010  .rcmulr 17061   ·𝑠 cvsca 17064  0gc0g 17248  -gcsg 18676  mulGrpcmgp 19815  1rcur 19832  Ringcrg 19878  algSccascl 21165  var1cv1 21453  Poly1cpl1 21454   Mat cmat 21660   matToPolyMat cmat2pmat 21959   CharPlyMat cchpmat 22081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-ot 4587  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-ofr 7601  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-sup 9304  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-fz 13346  df-fzo 13489  df-seq 13828  df-hash 14151  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-hom 17084  df-cco 17085  df-0g 17250  df-gsum 17251  df-prds 17256  df-pws 17258  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-mhm 18528  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-mulg 18798  df-subg 18849  df-ghm 18929  df-cntz 19020  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-ring 19880  df-subrg 20127  df-lmod 20231  df-lss 20300  df-sra 20540  df-rgmod 20541  df-dsmm 21045  df-frlm 21060  df-ascl 21168  df-psr 21218  df-mvr 21219  df-mpl 21220  df-opsr 21222  df-psr1 21457  df-vr1 21458  df-ply1 21459  df-mamu 21639  df-mat 21661  df-mat2pmat 21962
This theorem is referenced by:  chpdmat  22096
  Copyright terms: Public domain W3C validator