MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss0cl Structured version   Visualization version   GIF version

Theorem lss0cl 20868
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss0cl ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)

Proof of Theorem lss0cl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lss0cl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
21lssn0 20861 . . . 4 (𝑈𝑆𝑈 ≠ ∅)
3 n0 4306 . . . 4 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
42, 3sylib 218 . . 3 (𝑈𝑆 → ∃𝑥 𝑥𝑈)
54adantl 481 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∃𝑥 𝑥𝑈)
6 simp1 1136 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → 𝑊 ∈ LMod)
7 eqid 2729 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
87, 1lssel 20858 . . . . . . 7 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
983adant1 1130 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
10 lss0cl.z . . . . . . 7 0 = (0g𝑊)
11 eqid 2729 . . . . . . 7 (-g𝑊) = (-g𝑊)
127, 10, 11lmodsubid 20843 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(-g𝑊)𝑥) = 0 )
136, 9, 12syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → (𝑥(-g𝑊)𝑥) = 0 )
1411, 1lssvsubcl 20865 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥𝑈𝑥𝑈)) → (𝑥(-g𝑊)𝑥) ∈ 𝑈)
1514anabsan2 674 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → (𝑥(-g𝑊)𝑥) ∈ 𝑈)
16153impa 1109 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → (𝑥(-g𝑊)𝑥) ∈ 𝑈)
1713, 16eqeltrrd 2829 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → 0𝑈)
18173expia 1121 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑥𝑈0𝑈))
1918exlimdv 1933 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑥 𝑥𝑈0𝑈))
205, 19mpd 15 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4286  cfv 6486  (class class class)co 7353  Basecbs 17138  0gc0g 17361  -gcsg 18832  LModclmod 20781  LSubSpclss 20852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853
This theorem is referenced by:  lss0ss  20870  lssvneln0  20873  lssssr  20875  lssvscl  20876  lssintcl  20885  lssvs0or  21035  lspsolvlem  21067  lidl0cl  21145  frlmgsum  21697  frlmsslsp  21721  0ellsp  33319  lssats  38993  dia2dimlem7  41052  dochfl1  41458  lcfr  41567  mapdval2N  41612  mapdrvallem2  41627  mapdpglem6  41660  mapdpglem12  41665
  Copyright terms: Public domain W3C validator