| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for scalar product. (ax-hvmulass 30942 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
| slmdvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmdvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| slmdvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
| slmdvsass.t | ⊢ × = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| slmdvsass | ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmdvsass.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | slmdvsass.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2730 | . . . . . . . 8 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | slmdvsass.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | slmdvsass.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 8 | slmdvsass.t | . . . . . . . 8 ⊢ × = (.r‘𝐹) | |
| 9 | eqid 2730 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | eqid 2730 | . . . . . . . 8 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | slmdlema 33162 | . . . . . . 7 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
| 12 | 11 | simprd 495 | . . . . . 6 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊))) |
| 13 | 12 | simp1d 1142 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 14 | 13 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 15 | 14 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 16 | 15 | exp42 435 | . 2 ⊢ (𝑊 ∈ SLMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
| 17 | 16 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 1rcur 20096 SLModcslmd 33159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-slmd 33160 |
| This theorem is referenced by: slmdvs0 33184 |
| Copyright terms: Public domain | W3C validator |