| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for funcsetcestrc 18067. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
| funcsetcestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| Ref | Expression |
|---|---|
| funcsetcestrclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 2 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | funcsetcestrc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | funcsetcestrc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
| 7 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem5 18062 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
| 8 | 7 | anabsan2 674 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
| 9 | eqid 2731 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 10 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑈 ∈ WUni) |
| 11 | 1, 4 | setcbas 17982 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
| 12 | 2, 11 | eqtr4id 2785 | . . . . . 6 ⊢ (𝜑 → 𝐶 = 𝑈) |
| 13 | 12 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) |
| 14 | 13 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑈) |
| 15 | 1, 9, 10, 14 | setcid 17990 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋)) |
| 16 | 8, 15 | fveq12d 6829 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋))) |
| 17 | f1oi 6801 | . . . . . 6 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 18 | f1of 6763 | . . . . . 6 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
| 21 | 20, 20 | elmapd 8764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) ↔ ( I ↾ 𝑋):𝑋⟶𝑋)) |
| 22 | 19, 21 | mpbiri 258 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋)) |
| 23 | fvresi 7107 | . . . 4 ⊢ (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) |
| 25 | eqid 2731 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | |
| 26 | 25 | 1strbas 17132 | . . . . 5 ⊢ (𝑋 ∈ 𝐶 → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
| 27 | 20, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
| 28 | 27 | reseq2d 5928 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
| 29 | 24, 28 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
| 30 | 1, 2, 3 | funcsetcestrclem1 18057 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
| 31 | 30 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘(𝐹‘𝑋)) = ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉})) |
| 32 | funcsetcestrc.e | . . . 4 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 33 | eqid 2731 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 34 | 1, 2, 4, 5 | setc1strwun 18056 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
| 35 | 32, 33, 10, 34 | estrcid 18037 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉}) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
| 36 | 31, 35 | eqtr2d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉})) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| 37 | 16, 29, 36 | 3eqtrd 2770 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 ↦ cmpt 5172 I cid 5510 ↾ cres 5618 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 ↑m cmap 8750 WUnicwun 10588 ndxcnx 17101 Basecbs 17117 Idccid 17568 SetCatcsetc 17979 ExtStrCatcestrc 18025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-wun 10590 df-ni 10760 df-pli 10761 df-mi 10762 df-lti 10763 df-plpq 10796 df-mpq 10797 df-ltpq 10798 df-enq 10799 df-nq 10800 df-erq 10801 df-plq 10802 df-mq 10803 df-1nq 10804 df-rq 10805 df-ltnq 10806 df-np 10869 df-plp 10871 df-ltp 10873 df-enr 10943 df-nr 10944 df-c 11009 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-setc 17980 df-estrc 18026 |
| This theorem is referenced by: funcsetcestrc 18067 |
| Copyright terms: Public domain | W3C validator |