MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem7 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem7 18069
Description: Lemma 7 for funcsetcestrc 18072. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem7 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem7
StepHypRef Expression
1 funcsetcestrc.s . . . . 5 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . . . 5 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . . . 5 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . . . 5 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . . . 5 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . . . 5 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
71, 2, 3, 4, 5, 6funcsetcestrclem5 18067 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑋𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋m 𝑋)))
87anabsan2 674 . . 3 ((𝜑𝑋𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋m 𝑋)))
9 eqid 2733 . . . 4 (Id‘𝑆) = (Id‘𝑆)
104adantr 480 . . . 4 ((𝜑𝑋𝐶) → 𝑈 ∈ WUni)
111, 4setcbas 17987 . . . . . . 7 (𝜑𝑈 = (Base‘𝑆))
122, 11eqtr4id 2787 . . . . . 6 (𝜑𝐶 = 𝑈)
1312eleq2d 2819 . . . . 5 (𝜑 → (𝑋𝐶𝑋𝑈))
1413biimpa 476 . . . 4 ((𝜑𝑋𝐶) → 𝑋𝑈)
151, 9, 10, 14setcid 17995 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋))
168, 15fveq12d 6835 . 2 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)))
17 f1oi 6806 . . . . . 6 ( I ↾ 𝑋):𝑋1-1-onto𝑋
18 f1of 6768 . . . . . 6 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
1917, 18ax-mp 5 . . . . 5 ( I ↾ 𝑋):𝑋𝑋
20 simpr 484 . . . . . 6 ((𝜑𝑋𝐶) → 𝑋𝐶)
2120, 20elmapd 8770 . . . . 5 ((𝜑𝑋𝐶) → (( I ↾ 𝑋) ∈ (𝑋m 𝑋) ↔ ( I ↾ 𝑋):𝑋𝑋))
2219, 21mpbiri 258 . . . 4 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) ∈ (𝑋m 𝑋))
23 fvresi 7113 . . . 4 (( I ↾ 𝑋) ∈ (𝑋m 𝑋) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
2422, 23syl 17 . . 3 ((𝜑𝑋𝐶) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
25 eqid 2733 . . . . . 6 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
26251strbas 17137 . . . . 5 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2720, 26syl 17 . . . 4 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2827reseq2d 5932 . . 3 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
2924, 28eqtrd 2768 . 2 ((𝜑𝑋𝐶) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
301, 2, 3funcsetcestrclem1 18062 . . . 4 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
3130fveq2d 6832 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘(𝐹𝑋)) = ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}))
32 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
33 eqid 2733 . . . 4 (Id‘𝐸) = (Id‘𝐸)
341, 2, 4, 5setc1strwun 18061 . . . 4 ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)
3532, 33, 10, 34estrcid 18042 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
3631, 35eqtr2d 2769 . 2 ((𝜑𝑋𝐶) → ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})) = ((Id‘𝐸)‘(𝐹𝑋)))
3716, 29, 363eqtrd 2772 1 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {csn 4575  cop 4581  cmpt 5174   I cid 5513  cres 5621  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cmpo 7354  ωcom 7802  m cmap 8756  WUnicwun 10598  ndxcnx 17106  Basecbs 17122  Idccid 17573  SetCatcsetc 17984  ExtStrCatcestrc 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-wun 10600  df-ni 10770  df-pli 10771  df-mi 10772  df-lti 10773  df-plpq 10806  df-mpq 10807  df-ltpq 10808  df-enq 10809  df-nq 10810  df-erq 10811  df-plq 10812  df-mq 10813  df-1nq 10814  df-rq 10815  df-ltnq 10816  df-np 10879  df-plp 10881  df-ltp 10883  df-enr 10953  df-nr 10954  df-c 11019  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-setc 17985  df-estrc 18031
This theorem is referenced by:  funcsetcestrc  18072
  Copyright terms: Public domain W3C validator