![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcsetcestrc 18146. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | β’ π = (SetCatβπ) |
funcsetcestrc.c | β’ πΆ = (Baseβπ) |
funcsetcestrc.f | β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) |
funcsetcestrc.u | β’ (π β π β WUni) |
funcsetcestrc.o | β’ (π β Ο β π) |
funcsetcestrc.g | β’ (π β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) |
funcsetcestrc.e | β’ πΈ = (ExtStrCatβπ) |
Ref | Expression |
---|---|
funcsetcestrclem7 | β’ ((π β§ π β πΆ) β ((ππΊπ)β((Idβπ)βπ)) = ((IdβπΈ)β(πΉβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . . . 5 β’ π = (SetCatβπ) | |
2 | funcsetcestrc.c | . . . . 5 β’ πΆ = (Baseβπ) | |
3 | funcsetcestrc.f | . . . . 5 β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) | |
4 | funcsetcestrc.u | . . . . 5 β’ (π β π β WUni) | |
5 | funcsetcestrc.o | . . . . 5 β’ (π β Ο β π) | |
6 | funcsetcestrc.g | . . . . 5 β’ (π β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) | |
7 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem5 18141 | . . . 4 β’ ((π β§ (π β πΆ β§ π β πΆ)) β (ππΊπ) = ( I βΎ (π βm π))) |
8 | 7 | anabsan2 673 | . . 3 β’ ((π β§ π β πΆ) β (ππΊπ) = ( I βΎ (π βm π))) |
9 | eqid 2727 | . . . 4 β’ (Idβπ) = (Idβπ) | |
10 | 4 | adantr 480 | . . . 4 β’ ((π β§ π β πΆ) β π β WUni) |
11 | 1, 4 | setcbas 18058 | . . . . . . 7 β’ (π β π = (Baseβπ)) |
12 | 2, 11 | eqtr4id 2786 | . . . . . 6 β’ (π β πΆ = π) |
13 | 12 | eleq2d 2814 | . . . . 5 β’ (π β (π β πΆ β π β π)) |
14 | 13 | biimpa 476 | . . . 4 β’ ((π β§ π β πΆ) β π β π) |
15 | 1, 9, 10, 14 | setcid 18066 | . . 3 β’ ((π β§ π β πΆ) β ((Idβπ)βπ) = ( I βΎ π)) |
16 | 8, 15 | fveq12d 6898 | . 2 β’ ((π β§ π β πΆ) β ((ππΊπ)β((Idβπ)βπ)) = (( I βΎ (π βm π))β( I βΎ π))) |
17 | f1oi 6871 | . . . . . 6 β’ ( I βΎ π):πβ1-1-ontoβπ | |
18 | f1of 6833 | . . . . . 6 β’ (( I βΎ π):πβ1-1-ontoβπ β ( I βΎ π):πβΆπ) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 β’ ( I βΎ π):πβΆπ |
20 | simpr 484 | . . . . . 6 β’ ((π β§ π β πΆ) β π β πΆ) | |
21 | 20, 20 | elmapd 8850 | . . . . 5 β’ ((π β§ π β πΆ) β (( I βΎ π) β (π βm π) β ( I βΎ π):πβΆπ)) |
22 | 19, 21 | mpbiri 258 | . . . 4 β’ ((π β§ π β πΆ) β ( I βΎ π) β (π βm π)) |
23 | fvresi 7176 | . . . 4 β’ (( I βΎ π) β (π βm π) β (( I βΎ (π βm π))β( I βΎ π)) = ( I βΎ π)) | |
24 | 22, 23 | syl 17 | . . 3 β’ ((π β§ π β πΆ) β (( I βΎ (π βm π))β( I βΎ π)) = ( I βΎ π)) |
25 | eqid 2727 | . . . . . 6 β’ {β¨(Baseβndx), πβ©} = {β¨(Baseβndx), πβ©} | |
26 | 25 | 1strbas 17188 | . . . . 5 β’ (π β πΆ β π = (Baseβ{β¨(Baseβndx), πβ©})) |
27 | 20, 26 | syl 17 | . . . 4 β’ ((π β§ π β πΆ) β π = (Baseβ{β¨(Baseβndx), πβ©})) |
28 | 27 | reseq2d 5979 | . . 3 β’ ((π β§ π β πΆ) β ( I βΎ π) = ( I βΎ (Baseβ{β¨(Baseβndx), πβ©}))) |
29 | 24, 28 | eqtrd 2767 | . 2 β’ ((π β§ π β πΆ) β (( I βΎ (π βm π))β( I βΎ π)) = ( I βΎ (Baseβ{β¨(Baseβndx), πβ©}))) |
30 | 1, 2, 3 | funcsetcestrclem1 18136 | . . . 4 β’ ((π β§ π β πΆ) β (πΉβπ) = {β¨(Baseβndx), πβ©}) |
31 | 30 | fveq2d 6895 | . . 3 β’ ((π β§ π β πΆ) β ((IdβπΈ)β(πΉβπ)) = ((IdβπΈ)β{β¨(Baseβndx), πβ©})) |
32 | funcsetcestrc.e | . . . 4 β’ πΈ = (ExtStrCatβπ) | |
33 | eqid 2727 | . . . 4 β’ (IdβπΈ) = (IdβπΈ) | |
34 | 1, 2, 4, 5 | setc1strwun 18135 | . . . 4 β’ ((π β§ π β πΆ) β {β¨(Baseβndx), πβ©} β π) |
35 | 32, 33, 10, 34 | estrcid 18115 | . . 3 β’ ((π β§ π β πΆ) β ((IdβπΈ)β{β¨(Baseβndx), πβ©}) = ( I βΎ (Baseβ{β¨(Baseβndx), πβ©}))) |
36 | 31, 35 | eqtr2d 2768 | . 2 β’ ((π β§ π β πΆ) β ( I βΎ (Baseβ{β¨(Baseβndx), πβ©})) = ((IdβπΈ)β(πΉβπ))) |
37 | 16, 29, 36 | 3eqtrd 2771 | 1 β’ ((π β§ π β πΆ) β ((ππΊπ)β((Idβπ)βπ)) = ((IdβπΈ)β(πΉβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 {csn 4624 β¨cop 4630 β¦ cmpt 5225 I cid 5569 βΎ cres 5674 βΆwf 6538 β1-1-ontoβwf1o 6541 βcfv 6542 (class class class)co 7414 β cmpo 7416 Οcom 7864 βm cmap 8836 WUnicwun 10715 ndxcnx 17153 Basecbs 17171 Idccid 17636 SetCatcsetc 18055 ExtStrCatcestrc 18103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8718 df-ec 8720 df-qs 8724 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-wun 10717 df-ni 10887 df-pli 10888 df-mi 10889 df-lti 10890 df-plpq 10923 df-mpq 10924 df-ltpq 10925 df-enq 10926 df-nq 10927 df-erq 10928 df-plq 10929 df-mq 10930 df-1nq 10931 df-rq 10932 df-ltnq 10933 df-np 10996 df-plp 10998 df-ltp 11000 df-enr 11070 df-nr 11071 df-c 11136 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-slot 17142 df-ndx 17154 df-base 17172 df-hom 17248 df-cco 17249 df-cat 17639 df-cid 17640 df-setc 18056 df-estrc 18104 |
This theorem is referenced by: funcsetcestrc 18146 |
Copyright terms: Public domain | W3C validator |