![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
funcsetcestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
Ref | Expression |
---|---|
funcsetcestrclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
2 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
3 | funcsetcestrc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | funcsetcestrc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
7 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem5 18228 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
8 | 7 | anabsan2 673 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
9 | eqid 2740 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
10 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑈 ∈ WUni) |
11 | 1, 4 | setcbas 18145 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
12 | 2, 11 | eqtr4id 2799 | . . . . . 6 ⊢ (𝜑 → 𝐶 = 𝑈) |
13 | 12 | eleq2d 2830 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) |
14 | 13 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑈) |
15 | 1, 9, 10, 14 | setcid 18153 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋)) |
16 | 8, 15 | fveq12d 6927 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋))) |
17 | f1oi 6900 | . . . . . 6 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
18 | f1of 6862 | . . . . . 6 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
21 | 20, 20 | elmapd 8898 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) ↔ ( I ↾ 𝑋):𝑋⟶𝑋)) |
22 | 19, 21 | mpbiri 258 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋)) |
23 | fvresi 7207 | . . . 4 ⊢ (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) |
25 | eqid 2740 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | |
26 | 25 | 1strbas 17275 | . . . . 5 ⊢ (𝑋 ∈ 𝐶 → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
27 | 20, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
28 | 27 | reseq2d 6009 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
29 | 24, 28 | eqtrd 2780 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
30 | 1, 2, 3 | funcsetcestrclem1 18223 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
31 | 30 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘(𝐹‘𝑋)) = ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉})) |
32 | funcsetcestrc.e | . . . 4 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
33 | eqid 2740 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
34 | 1, 2, 4, 5 | setc1strwun 18222 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
35 | 32, 33, 10, 34 | estrcid 18202 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉}) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
36 | 31, 35 | eqtr2d 2781 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉})) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
37 | 16, 29, 36 | 3eqtrd 2784 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 ↑m cmap 8884 WUnicwun 10769 ndxcnx 17240 Basecbs 17258 Idccid 17723 SetCatcsetc 18142 ExtStrCatcestrc 18190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-wun 10771 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-rq 10986 df-ltnq 10987 df-np 11050 df-plp 11052 df-ltp 11054 df-enr 11124 df-nr 11125 df-c 11190 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-setc 18143 df-estrc 18191 |
This theorem is referenced by: funcsetcestrc 18233 |
Copyright terms: Public domain | W3C validator |