MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem7 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem7 18085
Description: Lemma 7 for funcsetcestrc 18088. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem7 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem7
StepHypRef Expression
1 funcsetcestrc.s . . . . 5 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . . . 5 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . . . 5 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . . . 5 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . . . 5 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . . . 5 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
71, 2, 3, 4, 5, 6funcsetcestrclem5 18083 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑋𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋m 𝑋)))
87anabsan2 674 . . 3 ((𝜑𝑋𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋m 𝑋)))
9 eqid 2729 . . . 4 (Id‘𝑆) = (Id‘𝑆)
104adantr 480 . . . 4 ((𝜑𝑋𝐶) → 𝑈 ∈ WUni)
111, 4setcbas 18003 . . . . . . 7 (𝜑𝑈 = (Base‘𝑆))
122, 11eqtr4id 2783 . . . . . 6 (𝜑𝐶 = 𝑈)
1312eleq2d 2814 . . . . 5 (𝜑 → (𝑋𝐶𝑋𝑈))
1413biimpa 476 . . . 4 ((𝜑𝑋𝐶) → 𝑋𝑈)
151, 9, 10, 14setcid 18011 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋))
168, 15fveq12d 6833 . 2 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)))
17 f1oi 6806 . . . . . 6 ( I ↾ 𝑋):𝑋1-1-onto𝑋
18 f1of 6768 . . . . . 6 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
1917, 18ax-mp 5 . . . . 5 ( I ↾ 𝑋):𝑋𝑋
20 simpr 484 . . . . . 6 ((𝜑𝑋𝐶) → 𝑋𝐶)
2120, 20elmapd 8774 . . . . 5 ((𝜑𝑋𝐶) → (( I ↾ 𝑋) ∈ (𝑋m 𝑋) ↔ ( I ↾ 𝑋):𝑋𝑋))
2219, 21mpbiri 258 . . . 4 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) ∈ (𝑋m 𝑋))
23 fvresi 7113 . . . 4 (( I ↾ 𝑋) ∈ (𝑋m 𝑋) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
2422, 23syl 17 . . 3 ((𝜑𝑋𝐶) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
25 eqid 2729 . . . . . 6 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
26251strbas 17153 . . . . 5 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2720, 26syl 17 . . . 4 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2827reseq2d 5934 . . 3 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
2924, 28eqtrd 2764 . 2 ((𝜑𝑋𝐶) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
301, 2, 3funcsetcestrclem1 18078 . . . 4 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
3130fveq2d 6830 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘(𝐹𝑋)) = ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}))
32 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
33 eqid 2729 . . . 4 (Id‘𝐸) = (Id‘𝐸)
341, 2, 4, 5setc1strwun 18077 . . . 4 ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)
3532, 33, 10, 34estrcid 18058 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
3631, 35eqtr2d 2765 . 2 ((𝜑𝑋𝐶) → ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})) = ((Id‘𝐸)‘(𝐹𝑋)))
3716, 29, 363eqtrd 2768 1 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4579  cop 4585  cmpt 5176   I cid 5517  cres 5625  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cmpo 7355  ωcom 7806  m cmap 8760  WUnicwun 10613  ndxcnx 17122  Basecbs 17138  Idccid 17589  SetCatcsetc 18000  ExtStrCatcestrc 18046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-wun 10615  df-ni 10785  df-pli 10786  df-mi 10787  df-lti 10788  df-plpq 10821  df-mpq 10822  df-ltpq 10823  df-enq 10824  df-nq 10825  df-erq 10826  df-plq 10827  df-mq 10828  df-1nq 10829  df-rq 10830  df-ltnq 10831  df-np 10894  df-plp 10896  df-ltp 10898  df-enr 10968  df-nr 10969  df-c 11034  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-setc 18001  df-estrc 18047
This theorem is referenced by:  funcsetcestrc  18088
  Copyright terms: Public domain W3C validator