Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcsetcestrc 17797. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
funcsetcestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
Ref | Expression |
---|---|
funcsetcestrclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
2 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
3 | funcsetcestrc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | funcsetcestrc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
7 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem5 17792 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
8 | 7 | anabsan2 670 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
9 | eqid 2738 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
10 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑈 ∈ WUni) |
11 | 1, 4 | setcbas 17709 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
12 | 2, 11 | eqtr4id 2798 | . . . . . 6 ⊢ (𝜑 → 𝐶 = 𝑈) |
13 | 12 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) |
14 | 13 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑈) |
15 | 1, 9, 10, 14 | setcid 17717 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋)) |
16 | 8, 15 | fveq12d 6763 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋))) |
17 | f1oi 6737 | . . . . . 6 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
18 | f1of 6700 | . . . . . 6 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
21 | 20, 20 | elmapd 8587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) ↔ ( I ↾ 𝑋):𝑋⟶𝑋)) |
22 | 19, 21 | mpbiri 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋)) |
23 | fvresi 7027 | . . . 4 ⊢ (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) |
25 | eqid 2738 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | |
26 | 25 | 1strbas 16856 | . . . . 5 ⊢ (𝑋 ∈ 𝐶 → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
27 | 20, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
28 | 27 | reseq2d 5880 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
29 | 24, 28 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
30 | 1, 2, 3 | funcsetcestrclem1 17787 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
31 | 30 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘(𝐹‘𝑋)) = ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉})) |
32 | funcsetcestrc.e | . . . 4 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
33 | eqid 2738 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
34 | 1, 2, 4, 5 | setc1strwun 17786 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
35 | 32, 33, 10, 34 | estrcid 17766 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉}) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
36 | 31, 35 | eqtr2d 2779 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉})) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
37 | 16, 29, 36 | 3eqtrd 2782 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 ↑m cmap 8573 WUnicwun 10387 ndxcnx 16822 Basecbs 16840 Idccid 17291 SetCatcsetc 17706 ExtStrCatcestrc 17754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-wun 10389 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-plp 10670 df-ltp 10672 df-enr 10742 df-nr 10743 df-c 10808 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-setc 17707 df-estrc 17755 |
This theorem is referenced by: funcsetcestrc 17797 |
Copyright terms: Public domain | W3C validator |