MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem7 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem7 17878
Description: Lemma 7 for funcsetcestrc 17881. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem7 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem7
StepHypRef Expression
1 funcsetcestrc.s . . . . 5 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . . . 5 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . . . 5 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . . . 5 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . . . 5 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . . . 5 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
71, 2, 3, 4, 5, 6funcsetcestrclem5 17876 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑋𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋m 𝑋)))
87anabsan2 671 . . 3 ((𝜑𝑋𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋m 𝑋)))
9 eqid 2738 . . . 4 (Id‘𝑆) = (Id‘𝑆)
104adantr 481 . . . 4 ((𝜑𝑋𝐶) → 𝑈 ∈ WUni)
111, 4setcbas 17793 . . . . . . 7 (𝜑𝑈 = (Base‘𝑆))
122, 11eqtr4id 2797 . . . . . 6 (𝜑𝐶 = 𝑈)
1312eleq2d 2824 . . . . 5 (𝜑 → (𝑋𝐶𝑋𝑈))
1413biimpa 477 . . . 4 ((𝜑𝑋𝐶) → 𝑋𝑈)
151, 9, 10, 14setcid 17801 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋))
168, 15fveq12d 6781 . 2 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)))
17 f1oi 6754 . . . . . 6 ( I ↾ 𝑋):𝑋1-1-onto𝑋
18 f1of 6716 . . . . . 6 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
1917, 18ax-mp 5 . . . . 5 ( I ↾ 𝑋):𝑋𝑋
20 simpr 485 . . . . . 6 ((𝜑𝑋𝐶) → 𝑋𝐶)
2120, 20elmapd 8629 . . . . 5 ((𝜑𝑋𝐶) → (( I ↾ 𝑋) ∈ (𝑋m 𝑋) ↔ ( I ↾ 𝑋):𝑋𝑋))
2219, 21mpbiri 257 . . . 4 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) ∈ (𝑋m 𝑋))
23 fvresi 7045 . . . 4 (( I ↾ 𝑋) ∈ (𝑋m 𝑋) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
2422, 23syl 17 . . 3 ((𝜑𝑋𝐶) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
25 eqid 2738 . . . . . 6 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
26251strbas 16929 . . . . 5 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2720, 26syl 17 . . . 4 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2827reseq2d 5891 . . 3 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
2924, 28eqtrd 2778 . 2 ((𝜑𝑋𝐶) → (( I ↾ (𝑋m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
301, 2, 3funcsetcestrclem1 17871 . . . 4 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
3130fveq2d 6778 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘(𝐹𝑋)) = ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}))
32 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
33 eqid 2738 . . . 4 (Id‘𝐸) = (Id‘𝐸)
341, 2, 4, 5setc1strwun 17870 . . . 4 ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)
3532, 33, 10, 34estrcid 17850 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
3631, 35eqtr2d 2779 . 2 ((𝜑𝑋𝐶) → ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})) = ((Id‘𝐸)‘(𝐹𝑋)))
3716, 29, 363eqtrd 2782 1 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  cop 4567  cmpt 5157   I cid 5488  cres 5591  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  m cmap 8615  WUnicwun 10456  ndxcnx 16894  Basecbs 16912  Idccid 17374  SetCatcsetc 17790  ExtStrCatcestrc 17838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-wun 10458  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739  df-ltp 10741  df-enr 10811  df-nr 10812  df-c 10877  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-setc 17791  df-estrc 17839
This theorem is referenced by:  funcsetcestrc  17881
  Copyright terms: Public domain W3C validator