| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for funcsetcestrc 18125. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
| funcsetcestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| Ref | Expression |
|---|---|
| funcsetcestrclem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 2 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | funcsetcestrc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | funcsetcestrc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
| 7 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem5 18120 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
| 8 | 7 | anabsan2 674 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 ↑m 𝑋))) |
| 9 | eqid 2729 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 10 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑈 ∈ WUni) |
| 11 | 1, 4 | setcbas 18040 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
| 12 | 2, 11 | eqtr4id 2783 | . . . . . 6 ⊢ (𝜑 → 𝐶 = 𝑈) |
| 13 | 12 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) |
| 14 | 13 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑈) |
| 15 | 1, 9, 10, 14 | setcid 18048 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋)) |
| 16 | 8, 15 | fveq12d 6865 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋))) |
| 17 | f1oi 6838 | . . . . . 6 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 18 | f1of 6800 | . . . . . 6 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
| 21 | 20, 20 | elmapd 8813 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) ↔ ( I ↾ 𝑋):𝑋⟶𝑋)) |
| 22 | 19, 21 | mpbiri 258 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋)) |
| 23 | fvresi 7147 | . . . 4 ⊢ (( I ↾ 𝑋) ∈ (𝑋 ↑m 𝑋) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋)) |
| 25 | eqid 2729 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | |
| 26 | 25 | 1strbas 17194 | . . . . 5 ⊢ (𝑋 ∈ 𝐶 → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
| 27 | 20, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 = (Base‘{〈(Base‘ndx), 𝑋〉})) |
| 28 | 27 | reseq2d 5950 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
| 29 | 24, 28 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (( I ↾ (𝑋 ↑m 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
| 30 | 1, 2, 3 | funcsetcestrclem1 18115 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
| 31 | 30 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘(𝐹‘𝑋)) = ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉})) |
| 32 | funcsetcestrc.e | . . . 4 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 33 | eqid 2729 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 34 | 1, 2, 4, 5 | setc1strwun 18114 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
| 35 | 32, 33, 10, 34 | estrcid 18095 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((Id‘𝐸)‘{〈(Base‘ndx), 𝑋〉}) = ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉}))) |
| 36 | 31, 35 | eqtr2d 2765 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ( I ↾ (Base‘{〈(Base‘ndx), 𝑋〉})) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| 37 | 16, 29, 36 | 3eqtrd 2768 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 ↑m cmap 8799 WUnicwun 10653 ndxcnx 17163 Basecbs 17179 Idccid 17626 SetCatcsetc 18037 ExtStrCatcestrc 18083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-wun 10655 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-plp 10936 df-ltp 10938 df-enr 11008 df-nr 11009 df-c 11074 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-setc 18038 df-estrc 18084 |
| This theorem is referenced by: funcsetcestrc 18125 |
| Copyright terms: Public domain | W3C validator |