![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq | Structured version Visualization version GIF version |
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) (Proof shortened by AV, 4-Mar-2019.) |
Ref | Expression |
---|---|
fvreseq | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvreseq0 7050 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
2 | 1 | anabsan2 672 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∀wral 3050 ⊆ wss 3946 ↾ cres 5683 Fn wfn 6548 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 |
This theorem is referenced by: fpr3g 8299 wfr3g 8336 tfr3 8428 frr3g 9795 fseqenlem1 10063 symgfixf1 19430 dchrresb 27280 bnj1536 34655 bnj1253 34818 bnj1280 34821 rdgprc 35566 fourierdlem73 45737 |
Copyright terms: Public domain | W3C validator |