![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq | Structured version Visualization version GIF version |
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) (Proof shortened by AV, 4-Mar-2019.) |
Ref | Expression |
---|---|
fvreseq | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvreseq0 6460 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
2 | 1 | anabsan2 653 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∀wral 3061 ⊆ wss 3723 ↾ cres 5251 Fn wfn 6026 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 |
This theorem is referenced by: wfr3g 7565 tfr3 7648 fseqenlem1 9047 symgfixf1 18064 dchrresb 25205 bnj1536 31262 bnj1253 31423 bnj1280 31426 rdgprc 32036 frr3g 32116 fourierdlem73 40913 |
Copyright terms: Public domain | W3C validator |