Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq Structured version   Visualization version   GIF version

Theorem fvreseq 6791
 Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) (Proof shortened by AV, 4-Mar-2019.)
Assertion
Ref Expression
fvreseq (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvreseq
StepHypRef Expression
1 fvreseq0 6789 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐵𝐴𝐵𝐴)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
21anabsan2 673 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∀wral 3109   ⊆ wss 3884   ↾ cres 5525   Fn wfn 6323  ‘cfv 6328 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-fv 6336 This theorem is referenced by:  wfr3g  7940  tfr3  8022  fseqenlem1  9439  symgfixf1  18561  dchrresb  25847  bnj1536  32240  bnj1253  32403  bnj1280  32406  rdgprc  33153  frr3g  33235  fpr3g  33236  fourierdlem73  42818
 Copyright terms: Public domain W3C validator