![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsdir | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30730 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdir.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsdir.a | ⊢ + = (+g‘𝑊) |
lmodvsdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsdir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsdir.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
lmodvsdir | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdir.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodvsdir.a | . . . . . . . 8 ⊢ + = (+g‘𝑊) | |
3 | lmodvsdir.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsdir.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
6 | lmodvsdir.p | . . . . . . . 8 ⊢ ⨣ = (+g‘𝐹) | |
7 | eqid 2724 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2724 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20701 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simpld 494 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))) |
11 | 10 | simp3d 1141 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
12 | 11 | 3expa 1115 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
13 | 12 | anabsan2 671 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
14 | 13 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))))) |
15 | 14 | 3imp2 1346 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 1rcur 20076 LModclmod 20696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 df-lmod 20698 |
This theorem is referenced by: lmod0vs 20731 lmodvsmmulgdi 20733 lmodvneg1 20741 lmodcom 20744 lmodsubdir 20756 islss3 20796 lss1d 20800 prdslmodd 20806 lspsolvlem 20983 frlmup1 21661 asclghm 21745 scmataddcl 22340 scmatghm 22357 pm2mpghm 22640 clmvsdir 24940 cvsi 24979 lmodvslmhm 32670 imaslmod 32934 lshpkrlem4 38473 baerlem3lem1 41068 baerlem5blem1 41070 hgmapadd 41255 mendlmod 42424 lmodvsmdi 47247 lincsum 47298 ldepsprlem 47341 |
Copyright terms: Public domain | W3C validator |