MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdir Structured version   Visualization version   GIF version

Theorem lmodvsdir 20901
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 31037 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v 𝑉 = (Base‘𝑊)
lmodvsdir.a + = (+g𝑊)
lmodvsdir.f 𝐹 = (Scalar‘𝑊)
lmodvsdir.s · = ( ·𝑠𝑊)
lmodvsdir.k 𝐾 = (Base‘𝐹)
lmodvsdir.p = (+g𝐹)
Assertion
Ref Expression
lmodvsdir ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2 lmodvsdir.a . . . . . . . 8 + = (+g𝑊)
3 lmodvsdir.s . . . . . . . 8 · = ( ·𝑠𝑊)
4 lmodvsdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
5 lmodvsdir.k . . . . . . . 8 𝐾 = (Base‘𝐹)
6 lmodvsdir.p . . . . . . . 8 = (+g𝐹)
7 eqid 2735 . . . . . . . 8 (.r𝐹) = (.r𝐹)
8 eqid 2735 . . . . . . . 8 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 20880 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 494 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))
1110simp3d 1143 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
12113expa 1117 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1312anabsan2 674 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1413exp42 435 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))))
15143imp2 1348 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  1rcur 20199  LModclmod 20875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-lmod 20877
This theorem is referenced by:  lmod0vs  20910  lmodvsmmulgdi  20912  lmodvneg1  20920  lmodcom  20923  lmodsubdir  20935  islss3  20975  lss1d  20979  prdslmodd  20985  lspsolvlem  21162  frlmup1  21836  asclghm  21921  scmataddcl  22538  scmatghm  22555  pm2mpghm  22838  clmvsdir  25138  cvsi  25177  lmodvslmhm  33036  imaslmod  33361  lshpkrlem4  39095  baerlem3lem1  41690  baerlem5blem1  41692  hgmapadd  41877  mendlmod  43178  lmodvsmdi  48224  lincsum  48275  ldepsprlem  48318
  Copyright terms: Public domain W3C validator