| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30970 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsdir.a | ⊢ + = (+g‘𝑊) |
| lmodvsdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsdir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsdir.p | ⊢ ⨣ = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsdir | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdir.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodvsdir.a | . . . . . . . 8 ⊢ + = (+g‘𝑊) | |
| 3 | lmodvsdir.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsdir.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | lmodvsdir.p | . . . . . . . 8 ⊢ ⨣ = (+g‘𝐹) | |
| 7 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20786 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simpld 494 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))) |
| 11 | 10 | simp3d 1144 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 12 | 11 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 13 | 12 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 14 | 13 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))))) |
| 15 | 14 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 1rcur 20084 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-lmod 20783 |
| This theorem is referenced by: lmod0vs 20816 lmodvsmmulgdi 20818 lmodvneg1 20826 lmodcom 20829 lmodsubdir 20841 islss3 20880 lss1d 20884 prdslmodd 20890 lspsolvlem 21067 frlmup1 21723 asclghm 21808 scmataddcl 22419 scmatghm 22436 pm2mpghm 22719 clmvsdir 25007 cvsi 25046 lmodvslmhm 33016 imaslmod 33300 lshpkrlem4 39091 baerlem3lem1 41686 baerlem5blem1 41688 hgmapadd 41873 mendlmod 43162 lmodvsmdi 48364 lincsum 48415 ldepsprlem 48458 |
| Copyright terms: Public domain | W3C validator |