| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30937 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsdir.a | ⊢ + = (+g‘𝑊) |
| lmodvsdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsdir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsdir.p | ⊢ ⨣ = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsdir | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdir.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodvsdir.a | . . . . . . . 8 ⊢ + = (+g‘𝑊) | |
| 3 | lmodvsdir.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsdir.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | lmodvsdir.p | . . . . . . . 8 ⊢ ⨣ = (+g‘𝐹) | |
| 7 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20771 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simpld 494 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))) |
| 11 | 10 | simp3d 1144 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 12 | 11 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 13 | 12 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 14 | 13 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))))) |
| 15 | 14 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 1rcur 20090 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lmod 20768 |
| This theorem is referenced by: lmod0vs 20801 lmodvsmmulgdi 20803 lmodvneg1 20811 lmodcom 20814 lmodsubdir 20826 islss3 20865 lss1d 20869 prdslmodd 20875 lspsolvlem 21052 frlmup1 21707 asclghm 21792 scmataddcl 22403 scmatghm 22420 pm2mpghm 22703 clmvsdir 24991 cvsi 25030 lmodvslmhm 32990 imaslmod 33324 lshpkrlem4 39106 baerlem3lem1 41701 baerlem5blem1 41703 hgmapadd 41888 mendlmod 43178 lmodvsmdi 48367 lincsum 48418 ldepsprlem 48461 |
| Copyright terms: Public domain | W3C validator |