MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdir Structured version   Visualization version   GIF version

Theorem lmodvsdir 20852
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30955 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v 𝑉 = (Base‘𝑊)
lmodvsdir.a + = (+g𝑊)
lmodvsdir.f 𝐹 = (Scalar‘𝑊)
lmodvsdir.s · = ( ·𝑠𝑊)
lmodvsdir.k 𝐾 = (Base‘𝐹)
lmodvsdir.p = (+g𝐹)
Assertion
Ref Expression
lmodvsdir ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2 lmodvsdir.a . . . . . . . 8 + = (+g𝑊)
3 lmodvsdir.s . . . . . . . 8 · = ( ·𝑠𝑊)
4 lmodvsdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
5 lmodvsdir.k . . . . . . . 8 𝐾 = (Base‘𝐹)
6 lmodvsdir.p . . . . . . . 8 = (+g𝐹)
7 eqid 2734 . . . . . . . 8 (.r𝐹) = (.r𝐹)
8 eqid 2734 . . . . . . . 8 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 20831 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 494 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))
1110simp3d 1144 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
12113expa 1118 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1312anabsan2 674 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1413exp42 435 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))))
15143imp2 1349 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  Scalarcsca 17276   ·𝑠 cvsca 17277  1rcur 20146  LModclmod 20826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-lmod 20828
This theorem is referenced by:  lmod0vs  20861  lmodvsmmulgdi  20863  lmodvneg1  20871  lmodcom  20874  lmodsubdir  20886  islss3  20925  lss1d  20929  prdslmodd  20935  lspsolvlem  21112  frlmup1  21772  asclghm  21857  scmataddcl  22470  scmatghm  22487  pm2mpghm  22770  clmvsdir  25060  cvsi  25099  lmodvslmhm  32992  imaslmod  33316  lshpkrlem4  39073  baerlem3lem1  41668  baerlem5blem1  41670  hgmapadd  41855  mendlmod  43164  lmodvsmdi  48253  lincsum  48304  ldepsprlem  48347
  Copyright terms: Public domain W3C validator