| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30990 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsdir.a | ⊢ + = (+g‘𝑊) |
| lmodvsdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsdir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsdir.p | ⊢ ⨣ = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsdir | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdir.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodvsdir.a | . . . . . . . 8 ⊢ + = (+g‘𝑊) | |
| 3 | lmodvsdir.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsdir.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | lmodvsdir.p | . . . . . . . 8 ⊢ ⨣ = (+g‘𝐹) | |
| 7 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2733 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20800 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simpld 494 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))) |
| 11 | 10 | simp3d 1144 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 12 | 11 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 13 | 12 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| 14 | 13 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))))) |
| 15 | 14 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 1rcur 20101 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-lmod 20797 |
| This theorem is referenced by: lmod0vs 20830 lmodvsmmulgdi 20832 lmodvneg1 20840 lmodcom 20843 lmodsubdir 20855 islss3 20894 lss1d 20898 prdslmodd 20904 lspsolvlem 21081 frlmup1 21737 asclghm 21822 scmataddcl 22432 scmatghm 22449 pm2mpghm 22732 clmvsdir 25019 cvsi 25058 lmodvslmhm 33037 imaslmod 33325 lshpkrlem4 39232 baerlem3lem1 41826 baerlem5blem1 41828 hgmapadd 42013 mendlmod 43306 lmodvsmdi 48503 lincsum 48554 ldepsprlem 48597 |
| Copyright terms: Public domain | W3C validator |