![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsdir | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30525 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdir.v | β’ π = (Baseβπ) |
lmodvsdir.a | β’ + = (+gβπ) |
lmodvsdir.f | β’ πΉ = (Scalarβπ) |
lmodvsdir.s | β’ Β· = ( Β·π βπ) |
lmodvsdir.k | β’ πΎ = (BaseβπΉ) |
lmodvsdir.p | ⒠⨣ = (+gβπΉ) |
Ref | Expression |
---|---|
lmodvsdir | β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdir.v | . . . . . . . 8 β’ π = (Baseβπ) | |
2 | lmodvsdir.a | . . . . . . . 8 β’ + = (+gβπ) | |
3 | lmodvsdir.s | . . . . . . . 8 β’ Β· = ( Β·π βπ) | |
4 | lmodvsdir.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
5 | lmodvsdir.k | . . . . . . . 8 β’ πΎ = (BaseβπΉ) | |
6 | lmodvsdir.p | . . . . . . . 8 ⒠⨣ = (+gβπΉ) | |
7 | eqid 2731 | . . . . . . . 8 β’ (.rβπΉ) = (.rβπΉ) | |
8 | eqid 2731 | . . . . . . . 8 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20620 | . . . . . . 7 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β (((π Β· π) β π β§ (π Β· (π + π)) = ((π Β· π) + (π Β· π)) β§ ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) β§ (((π(.rβπΉ)π ) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π))) |
10 | 9 | simpld 494 | . . . . . 6 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π Β· π) β π β§ (π Β· (π + π)) = ((π Β· π) + (π Β· π)) β§ ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π)))) |
11 | 10 | simp3d 1143 | . . . . 5 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
12 | 11 | 3expa 1117 | . . . 4 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ (π β π β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
13 | 12 | anabsan2 671 | . . 3 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ π β π) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
14 | 13 | exp42 435 | . 2 β’ (π β LMod β (π β πΎ β (π β πΎ β (π β π β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π)))))) |
15 | 14 | 3imp2 1348 | 1 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βcfv 6544 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 Scalarcsca 17205 Β·π cvsca 17206 1rcur 20076 LModclmod 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7415 df-lmod 20617 |
This theorem is referenced by: lmod0vs 20650 lmodvsmmulgdi 20652 lmodvneg1 20660 lmodcom 20663 lmodsubdir 20675 islss3 20715 lss1d 20719 prdslmodd 20725 lspsolvlem 20901 frlmup1 21573 asclghm 21657 scmataddcl 22239 scmatghm 22256 pm2mpghm 22539 clmvsdir 24839 cvsi 24878 lmodvslmhm 32469 imaslmod 32735 lshpkrlem4 38287 baerlem3lem1 40882 baerlem5blem1 40884 hgmapadd 41069 mendlmod 42238 lmodvsmdi 47148 lincsum 47199 ldepsprlem 47242 |
Copyright terms: Public domain | W3C validator |