![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsdir | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30299 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdir.v | β’ π = (Baseβπ) |
lmodvsdir.a | β’ + = (+gβπ) |
lmodvsdir.f | β’ πΉ = (Scalarβπ) |
lmodvsdir.s | β’ Β· = ( Β·π βπ) |
lmodvsdir.k | β’ πΎ = (BaseβπΉ) |
lmodvsdir.p | ⒠⨣ = (+gβπΉ) |
Ref | Expression |
---|---|
lmodvsdir | β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdir.v | . . . . . . . 8 β’ π = (Baseβπ) | |
2 | lmodvsdir.a | . . . . . . . 8 β’ + = (+gβπ) | |
3 | lmodvsdir.s | . . . . . . . 8 β’ Β· = ( Β·π βπ) | |
4 | lmodvsdir.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
5 | lmodvsdir.k | . . . . . . . 8 β’ πΎ = (BaseβπΉ) | |
6 | lmodvsdir.p | . . . . . . . 8 ⒠⨣ = (+gβπΉ) | |
7 | eqid 2732 | . . . . . . . 8 β’ (.rβπΉ) = (.rβπΉ) | |
8 | eqid 2732 | . . . . . . . 8 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20480 | . . . . . . 7 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β (((π Β· π) β π β§ (π Β· (π + π)) = ((π Β· π) + (π Β· π)) β§ ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) β§ (((π(.rβπΉ)π ) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π))) |
10 | 9 | simpld 495 | . . . . . 6 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π Β· π) β π β§ (π Β· (π + π)) = ((π Β· π) + (π Β· π)) β§ ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π)))) |
11 | 10 | simp3d 1144 | . . . . 5 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
12 | 11 | 3expa 1118 | . . . 4 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ (π β π β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
13 | 12 | anabsan2 672 | . . 3 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ π β π) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
14 | 13 | exp42 436 | . 2 β’ (π β LMod β (π β πΎ β (π β πΎ β (π β π β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π)))))) |
15 | 14 | 3imp2 1349 | 1 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 Basecbs 17146 +gcplusg 17199 .rcmulr 17200 Scalarcsca 17202 Β·π cvsca 17203 1rcur 20006 LModclmod 20475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 df-lmod 20477 |
This theorem is referenced by: lmod0vs 20510 lmodvsmmulgdi 20512 lmodvneg1 20520 lmodcom 20523 lmodsubdir 20535 islss3 20575 lss1d 20579 prdslmodd 20585 lspsolvlem 20761 frlmup1 21359 asclghm 21443 scmataddcl 22025 scmatghm 22042 pm2mpghm 22325 clmvsdir 24614 cvsi 24653 lmodvslmhm 32243 imaslmod 32509 lshpkrlem4 38069 baerlem3lem1 40664 baerlem5blem1 40666 hgmapadd 40851 mendlmod 42017 lmodvsmdi 47137 lincsum 47188 ldepsprlem 47231 |
Copyright terms: Public domain | W3C validator |