MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdir Structured version   Visualization version   GIF version

Theorem lmodvsdir 19651
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 28791 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v 𝑉 = (Base‘𝑊)
lmodvsdir.a + = (+g𝑊)
lmodvsdir.f 𝐹 = (Scalar‘𝑊)
lmodvsdir.s · = ( ·𝑠𝑊)
lmodvsdir.k 𝐾 = (Base‘𝐹)
lmodvsdir.p = (+g𝐹)
Assertion
Ref Expression
lmodvsdir ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2 lmodvsdir.a . . . . . . . 8 + = (+g𝑊)
3 lmodvsdir.s . . . . . . . 8 · = ( ·𝑠𝑊)
4 lmodvsdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
5 lmodvsdir.k . . . . . . . 8 𝐾 = (Base‘𝐹)
6 lmodvsdir.p . . . . . . . 8 = (+g𝐹)
7 eqid 2798 . . . . . . . 8 (.r𝐹) = (.r𝐹)
8 eqid 2798 . . . . . . . 8 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 19632 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 498 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))
1110simp3d 1141 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
12113expa 1115 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1312anabsan2 673 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1413exp42 439 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))))
15143imp2 1346 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  1rcur 19244  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-lmod 19629
This theorem is referenced by:  lmod0vs  19660  lmodvsmmulgdi  19662  lmodvneg1  19670  lmodcom  19673  lmodsubdir  19685  islss3  19724  lss1d  19728  prdslmodd  19734  lspsolvlem  19907  frlmup1  20487  asclghm  20569  scmataddcl  21121  scmatghm  21138  pm2mpghm  21421  clmvsdir  23696  cvsi  23735  lmodvslmhm  30735  imaslmod  30973  lshpkrlem4  36409  baerlem3lem1  39003  baerlem5blem1  39005  hgmapadd  39190  mendlmod  40137  lmodvsmdi  44784  lincsum  44838  ldepsprlem  44881
  Copyright terms: Public domain W3C validator