MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdir Structured version   Visualization version   GIF version

Theorem lmodvsdir 20906
Description: Distributive law for scalar product (right-distributivity). (ax-hvdistr1 31040 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v 𝑉 = (Base‘𝑊)
lmodvsdir.a + = (+g𝑊)
lmodvsdir.f 𝐹 = (Scalar‘𝑊)
lmodvsdir.s · = ( ·𝑠𝑊)
lmodvsdir.k 𝐾 = (Base‘𝐹)
lmodvsdir.p = (+g𝐹)
Assertion
Ref Expression
lmodvsdir ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2 lmodvsdir.a . . . . . . . 8 + = (+g𝑊)
3 lmodvsdir.s . . . . . . . 8 · = ( ·𝑠𝑊)
4 lmodvsdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
5 lmodvsdir.k . . . . . . . 8 𝐾 = (Base‘𝐹)
6 lmodvsdir.p . . . . . . . 8 = (+g𝐹)
7 eqid 2740 . . . . . . . 8 (.r𝐹) = (.r𝐹)
8 eqid 2740 . . . . . . . 8 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 20885 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 494 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))
1110simp3d 1144 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
12113expa 1118 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1312anabsan2 673 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
1413exp42 435 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))))))
15143imp2 1349 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  1rcur 20208  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-lmod 20882
This theorem is referenced by:  lmod0vs  20915  lmodvsmmulgdi  20917  lmodvneg1  20925  lmodcom  20928  lmodsubdir  20940  islss3  20980  lss1d  20984  prdslmodd  20990  lspsolvlem  21167  frlmup1  21841  asclghm  21926  scmataddcl  22543  scmatghm  22560  pm2mpghm  22843  clmvsdir  25143  cvsi  25182  lmodvslmhm  33033  imaslmod  33346  lshpkrlem4  39069  baerlem3lem1  41664  baerlem5blem1  41666  hgmapadd  41851  mendlmod  43150  lmodvsmdi  48107  lincsum  48158  ldepsprlem  48201
  Copyright terms: Public domain W3C validator