![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product. (ax-hvmulass 30012 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsass.t | ⊢ × = (.r‘𝐹) |
Ref | Expression |
---|---|
lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
8 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20383 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simprld 770 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
11 | 10 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
12 | 11 | anabsan2 672 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
13 | 12 | exp42 436 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
14 | 13 | 3imp2 1349 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6501 (class class class)co 7362 Basecbs 17094 +gcplusg 17147 .rcmulr 17148 Scalarcsca 17150 ·𝑠 cvsca 17151 1rcur 19927 LModclmod 20378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-nul 5268 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3406 df-v 3448 df-sbc 3743 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-iota 6453 df-fv 6509 df-ov 7365 df-lmod 20380 |
This theorem is referenced by: lmodvs0 20413 lmodvsneg 20423 lmodsubvs 20435 lmodsubdi 20436 lmodsubdir 20437 islss3 20477 lss1d 20481 prdslmodd 20487 lmodvsinv 20554 lmhmvsca 20563 lvecvs0or 20628 lssvs0or 20630 lvecinv 20633 lspsnvs 20634 lspfixed 20648 lspsolvlem 20662 lspsolv 20663 frlmup1 21241 assa2ass 21306 ascldimul 21328 assamulgscmlem2 21340 mplmon2mul 21514 smatvscl 21910 matinv 22063 clmvsass 24489 cvsi 24530 imaslmod 32216 lshpkrlem4 37648 lcdvsass 40143 baerlem3lem1 40243 hgmapmul 40431 prjspertr 41001 prjspner1 41022 mendlmod 41578 lincscm 46631 ldepsprlem 46673 lincresunit3lem3 46675 lincresunit3lem1 46680 |
Copyright terms: Public domain | W3C validator |