Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product. (ax-hvmulass 29270 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsass.t | ⊢ × = (.r‘𝐹) |
Ref | Expression |
---|---|
lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
8 | eqid 2738 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20043 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simprld 768 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
11 | 10 | 3expa 1116 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
12 | 11 | anabsan2 670 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
13 | 12 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
14 | 13 | 3imp2 1347 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 1rcur 19652 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-lmod 20040 |
This theorem is referenced by: lmodvs0 20072 lmodvsneg 20082 lmodsubvs 20094 lmodsubdi 20095 lmodsubdir 20096 islss3 20136 lss1d 20140 prdslmodd 20146 lmodvsinv 20213 lmhmvsca 20222 lvecvs0or 20285 lssvs0or 20287 lvecinv 20290 lspsnvs 20291 lspfixed 20305 lspsolvlem 20319 lspsolv 20320 frlmup1 20915 assa2ass 20980 ascldimul 21002 assamulgscmlem2 21014 mplmon2mul 21187 smatvscl 21581 matinv 21734 clmvsass 24158 cvsi 24199 imaslmod 31455 lshpkrlem4 37054 lcdvsass 39548 baerlem3lem1 39648 hgmapmul 39836 prjspertr 40365 prjspner1 40384 mendlmod 40934 lincscm 45659 ldepsprlem 45701 lincresunit3lem3 45703 lincresunit3lem1 45708 |
Copyright terms: Public domain | W3C validator |