![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product. (ax-hvmulass 30694 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsass.t | ⊢ × = (.r‘𝐹) |
Ref | Expression |
---|---|
lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
8 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20707 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simprld 769 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
11 | 10 | 3expa 1117 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
12 | 11 | anabsan2 671 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
13 | 12 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
14 | 13 | 3imp2 1348 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 .rcmulr 17205 Scalarcsca 17207 ·𝑠 cvsca 17208 1rcur 20082 LModclmod 20702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-lmod 20704 |
This theorem is referenced by: lmodvs0 20738 lmodvsneg 20748 lmodsubvs 20760 lmodsubdi 20761 lmodsubdir 20762 islss3 20802 lss1d 20806 prdslmodd 20812 lmodvsinv 20880 lmhmvsca 20889 lvecvs0or 20955 lssvs0or 20957 lvecinv 20960 lspsnvs 20961 lspfixed 20975 lspsolvlem 20989 lspsolv 20990 frlmup1 21663 assa2ass 21728 ascldimul 21752 assamulgscmlem2 21764 mplmon2mul 21941 smatvscl 22346 matinv 22499 clmvsass 24936 cvsi 24977 imaslmod 32905 lshpkrlem4 38449 lcdvsass 40944 baerlem3lem1 41044 hgmapmul 41232 prjspertr 41812 prjspner1 41833 mendlmod 42400 lincscm 47275 ldepsprlem 47317 lincresunit3lem3 47319 lincresunit3lem1 47324 |
Copyright terms: Public domain | W3C validator |