| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for scalar product. (ax-hvmulass 30993 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsass.t | ⊢ × = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | eqid 2736 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
| 8 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20827 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simprld 771 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 11 | 10 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 12 | 11 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 13 | 12 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
| 14 | 13 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 1rcur 20146 LModclmod 20822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-lmod 20824 |
| This theorem is referenced by: lmodvs0 20858 lmodvsneg 20868 lmodsubvs 20880 lmodsubdi 20881 lmodsubdir 20882 islss3 20921 lss1d 20925 prdslmodd 20931 lmodvsinv 20999 lmhmvsca 21008 lvecvs0or 21074 lssvs0or 21076 lvecinv 21079 lspsnvs 21080 lspfixed 21094 lspsolvlem 21108 lspsolv 21109 frlmup1 21763 assa2ass 21828 assa2ass2 21829 ascldimul 21853 assamulgscmlem2 21865 mplmon2mul 22032 smatvscl 22467 matinv 22620 clmvsass 25045 cvsi 25086 imaslmod 33373 lshpkrlem4 39136 lcdvsass 41631 baerlem3lem1 41731 hgmapmul 41919 prjspertr 42595 prjspner1 42616 mendlmod 43180 lincscm 48373 ldepsprlem 48415 lincresunit3lem3 48417 lincresunit3lem1 48422 |
| Copyright terms: Public domain | W3C validator |