| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for scalar product. (ax-hvmulass 30970 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsass.t | ⊢ × = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20787 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simprld 771 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 11 | 10 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 12 | 11 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 13 | 12 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
| 14 | 13 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 .rcmulr 17181 Scalarcsca 17183 ·𝑠 cvsca 17184 1rcur 20085 LModclmod 20782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-lmod 20784 |
| This theorem is referenced by: lmodvs0 20818 lmodvsneg 20828 lmodsubvs 20840 lmodsubdi 20841 lmodsubdir 20842 islss3 20881 lss1d 20885 prdslmodd 20891 lmodvsinv 20959 lmhmvsca 20968 lvecvs0or 21034 lssvs0or 21036 lvecinv 21039 lspsnvs 21040 lspfixed 21054 lspsolvlem 21068 lspsolv 21069 frlmup1 21724 assa2ass 21789 assa2ass2 21790 ascldimul 21814 assamulgscmlem2 21826 mplmon2mul 21993 smatvscl 22428 matinv 22581 clmvsass 25006 cvsi 25047 imaslmod 33309 lshpkrlem4 39111 lcdvsass 41606 baerlem3lem1 41706 hgmapmul 41894 prjspertr 42598 prjspner1 42619 mendlmod 43182 lincscm 48435 ldepsprlem 48477 lincresunit3lem3 48479 lincresunit3lem1 48484 |
| Copyright terms: Public domain | W3C validator |