MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsass Structured version   Visualization version   GIF version

Theorem lmodvsass 19098
Description: Associative law for scalar product. (ax-hvmulass 28204 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsass.v 𝑉 = (Base‘𝑊)
lmodvsass.f 𝐹 = (Scalar‘𝑊)
lmodvsass.s · = ( ·𝑠𝑊)
lmodvsass.k 𝐾 = (Base‘𝐹)
lmodvsass.t × = (.r𝐹)
Assertion
Ref Expression
lmodvsass ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))

Proof of Theorem lmodvsass
StepHypRef Expression
1 lmodvsass.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 eqid 2771 . . . . . . 7 (+g𝑊) = (+g𝑊)
3 lmodvsass.s . . . . . . 7 · = ( ·𝑠𝑊)
4 lmodvsass.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
5 lmodvsass.k . . . . . . 7 𝐾 = (Base‘𝐹)
6 eqid 2771 . . . . . . 7 (+g𝐹) = (+g𝐹)
7 lmodvsass.t . . . . . . 7 × = (.r𝐹)
8 eqid 2771 . . . . . . 7 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 19078 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simprld 755 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
11103expa 1111 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1211anabsan2 653 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1312exp42 422 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))))))
14133imp2 1442 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  1rcur 18709  LModclmod 19073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-iota 5994  df-fv 6039  df-ov 6796  df-lmod 19075
This theorem is referenced by:  lmodvs0  19107  lmodvsneg  19117  lmodsubvs  19129  lmodsubdi  19130  lmodsubdir  19131  islss3  19172  lss1d  19176  prdslmodd  19182  lmodvsinv  19249  lmhmvsca  19258  lvecvs0or  19321  lssvs0or  19323  lvecinv  19326  lspsnvs  19327  lspfixed  19341  lspfixedOLD  19342  lspsolvlem  19356  lspsolv  19357  assa2ass  19537  asclrhm  19557  assamulgscmlem2  19564  mplmon2mul  19716  frlmup1  20354  smatvscl  20548  matinv  20702  clmvsass  23108  cvsi  23149  lshpkrlem4  34922  lcdvsass  37417  baerlem3lem1  37517  hgmapmul  37705  mendlmod  38289  lincscm  42747  ldepsprlem  42789  lincresunit3lem3  42791  lincresunit3lem1  42796
  Copyright terms: Public domain W3C validator