| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for scalar product. (ax-hvmulass 30979 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsass.t | ⊢ × = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
| 8 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20793 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simprld 771 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 11 | 10 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 12 | 11 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 13 | 12 | exp42 435 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
| 14 | 13 | 3imp2 1350 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 1rcur 20094 LModclmod 20788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-lmod 20790 |
| This theorem is referenced by: lmodvs0 20824 lmodvsneg 20834 lmodsubvs 20846 lmodsubdi 20847 lmodsubdir 20848 islss3 20887 lss1d 20891 prdslmodd 20897 lmodvsinv 20965 lmhmvsca 20974 lvecvs0or 21040 lssvs0or 21042 lvecinv 21045 lspsnvs 21046 lspfixed 21060 lspsolvlem 21074 lspsolv 21075 frlmup1 21730 assa2ass 21795 assa2ass2 21796 ascldimul 21820 assamulgscmlem2 21832 mplmon2mul 21999 smatvscl 22434 matinv 22587 clmvsass 25011 cvsi 25052 imaslmod 33310 lshpkrlem4 39152 lcdvsass 41646 baerlem3lem1 41746 hgmapmul 41934 prjspertr 42638 prjspner1 42659 mendlmod 43222 lincscm 48462 ldepsprlem 48504 lincresunit3lem3 48506 lincresunit3lem1 48511 |
| Copyright terms: Public domain | W3C validator |