MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsass Structured version   Visualization version   GIF version

Theorem lmodvsass 20815
Description: Associative law for scalar product. (ax-hvmulass 30979 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsass.v 𝑉 = (Base‘𝑊)
lmodvsass.f 𝐹 = (Scalar‘𝑊)
lmodvsass.s · = ( ·𝑠𝑊)
lmodvsass.k 𝐾 = (Base‘𝐹)
lmodvsass.t × = (.r𝐹)
Assertion
Ref Expression
lmodvsass ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))

Proof of Theorem lmodvsass
StepHypRef Expression
1 lmodvsass.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 eqid 2731 . . . . . . 7 (+g𝑊) = (+g𝑊)
3 lmodvsass.s . . . . . . 7 · = ( ·𝑠𝑊)
4 lmodvsass.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
5 lmodvsass.k . . . . . . 7 𝐾 = (Base‘𝐹)
6 eqid 2731 . . . . . . 7 (+g𝐹) = (+g𝐹)
7 lmodvsass.t . . . . . . 7 × = (.r𝐹)
8 eqid 2731 . . . . . . 7 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 20793 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simprld 771 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
11103expa 1118 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1211anabsan2 674 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1312exp42 435 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))))))
14133imp2 1350 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  1rcur 20094  LModclmod 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-lmod 20790
This theorem is referenced by:  lmodvs0  20824  lmodvsneg  20834  lmodsubvs  20846  lmodsubdi  20847  lmodsubdir  20848  islss3  20887  lss1d  20891  prdslmodd  20897  lmodvsinv  20965  lmhmvsca  20974  lvecvs0or  21040  lssvs0or  21042  lvecinv  21045  lspsnvs  21046  lspfixed  21060  lspsolvlem  21074  lspsolv  21075  frlmup1  21730  assa2ass  21795  assa2ass2  21796  ascldimul  21820  assamulgscmlem2  21832  mplmon2mul  21999  smatvscl  22434  matinv  22587  clmvsass  25011  cvsi  25052  imaslmod  33310  lshpkrlem4  39152  lcdvsass  41646  baerlem3lem1  41746  hgmapmul  41934  prjspertr  42638  prjspner1  42659  mendlmod  43222  lincscm  48462  ldepsprlem  48504  lincresunit3lem3  48506  lincresunit3lem1  48511
  Copyright terms: Public domain W3C validator