![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product. (ax-hvmulass 30260 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsass.v | β’ π = (Baseβπ) |
lmodvsass.f | β’ πΉ = (Scalarβπ) |
lmodvsass.s | β’ Β· = ( Β·π βπ) |
lmodvsass.k | β’ πΎ = (BaseβπΉ) |
lmodvsass.t | β’ Γ = (.rβπΉ) |
Ref | Expression |
---|---|
lmodvsass | β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π Γ π ) Β· π) = (π Β· (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsass.v | . . . . . . 7 β’ π = (Baseβπ) | |
2 | eqid 2733 | . . . . . . 7 β’ (+gβπ) = (+gβπ) | |
3 | lmodvsass.s | . . . . . . 7 β’ Β· = ( Β·π βπ) | |
4 | lmodvsass.f | . . . . . . 7 β’ πΉ = (Scalarβπ) | |
5 | lmodvsass.k | . . . . . . 7 β’ πΎ = (BaseβπΉ) | |
6 | eqid 2733 | . . . . . . 7 β’ (+gβπΉ) = (+gβπΉ) | |
7 | lmodvsass.t | . . . . . . 7 β’ Γ = (.rβπΉ) | |
8 | eqid 2733 | . . . . . . 7 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 20476 | . . . . . 6 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β (((π Β· π) β π β§ (π Β· (π(+gβπ)π)) = ((π Β· π)(+gβπ)(π Β· π)) β§ ((π(+gβπΉ)π ) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) β§ (((π Γ π ) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π))) |
10 | 9 | simprld 771 | . . . . 5 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π Γ π ) Β· π) = (π Β· (π Β· π))) |
11 | 10 | 3expa 1119 | . . . 4 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ (π β π β§ π β π)) β ((π Γ π ) Β· π) = (π Β· (π Β· π))) |
12 | 11 | anabsan2 673 | . . 3 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ π β π) β ((π Γ π ) Β· π) = (π Β· (π Β· π))) |
13 | 12 | exp42 437 | . 2 β’ (π β LMod β (π β πΎ β (π β πΎ β (π β π β ((π Γ π ) Β· π) = (π Β· (π Β· π)))))) |
14 | 13 | 3imp2 1350 | 1 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π Γ π ) Β· π) = (π Β· (π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 .rcmulr 17198 Scalarcsca 17200 Β·π cvsca 17201 1rcur 20004 LModclmod 20471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-lmod 20473 |
This theorem is referenced by: lmodvs0 20506 lmodvsneg 20516 lmodsubvs 20528 lmodsubdi 20529 lmodsubdir 20530 islss3 20570 lss1d 20574 prdslmodd 20580 lmodvsinv 20647 lmhmvsca 20656 lvecvs0or 20721 lssvs0or 20723 lvecinv 20726 lspsnvs 20727 lspfixed 20741 lspsolvlem 20755 lspsolv 20756 frlmup1 21353 assa2ass 21418 ascldimul 21442 assamulgscmlem2 21454 mplmon2mul 21630 smatvscl 22026 matinv 22179 clmvsass 24605 cvsi 24646 imaslmod 32468 lshpkrlem4 37983 lcdvsass 40478 baerlem3lem1 40578 hgmapmul 40766 prjspertr 41347 prjspner1 41368 mendlmod 41935 lincscm 47111 ldepsprlem 47153 lincresunit3lem3 47155 lincresunit3lem1 47160 |
Copyright terms: Public domain | W3C validator |