Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem7ALTV | Structured version Visualization version GIF version |
Description: Lemma 7 for funcringcsetcALTV 45626. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | ⊢ 𝑅 = (RingCatALTV‘𝑈) |
funcringcsetcALTV.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetclem7ALTV | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.r | . . . . 5 ⊢ 𝑅 = (RingCatALTV‘𝑈) | |
2 | funcringcsetcALTV.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcringcsetcALTV.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | funcringcsetcALTV.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcringcsetcALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcringcsetcALTV.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcringcsetcALTV.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetclem5ALTV 45621 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
9 | 8 | anabsan2 671 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
10 | eqid 2738 | . . . 4 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
11 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
12 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | eqid 2738 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
14 | 1, 3, 10, 11, 12, 13 | ringcidALTV 45612 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑅)‘𝑋) = ( I ↾ (Base‘𝑋))) |
15 | 9, 14 | fveq12d 6781 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋)))) |
16 | 1, 3, 5 | ringcbasALTV 45604 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
17 | 16 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
18 | elin 3903 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) | |
19 | 18 | simprbi 497 | . . . . 5 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ Ring) |
20 | 17, 19 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ Ring)) |
21 | 20 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ Ring) |
22 | 13 | idrhm 19975 | . . 3 ⊢ (𝑋 ∈ Ring → ( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋)) |
23 | fvresi 7045 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
25 | 1, 2, 3, 4, 5, 6 | funcringcsetclem1ALTV 45617 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
26 | 25 | fveq2d 6778 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
27 | eqid 2738 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
28 | 1, 3, 5 | ringcbasbasALTV 45616 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
29 | 2, 27, 11, 28 | setcid 17801 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
30 | 26, 29 | eqtr2d 2779 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
31 | 15, 24, 30 | 3eqtrd 2782 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 WUnicwun 10456 Basecbs 16912 Idccid 17374 SetCatcsetc 17790 Ringcrg 19783 RingHom crh 19956 RingCatALTVcringcALTV 45562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-wun 10458 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-hom 16986 df-cco 16987 df-0g 17152 df-cat 17377 df-cid 17378 df-setc 17791 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-ghm 18832 df-mgp 19721 df-ur 19738 df-ring 19785 df-rnghom 19959 df-ringcALTV 45564 |
This theorem is referenced by: funcringcsetcALTV 45626 |
Copyright terms: Public domain | W3C validator |