![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem7ALTV | Structured version Visualization version GIF version |
Description: Lemma 7 for funcringcsetcALTV 47496. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | β’ π = (RingCatALTVβπ) |
funcringcsetcALTV.s | β’ π = (SetCatβπ) |
funcringcsetcALTV.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV.u | β’ (π β π β WUni) |
funcringcsetcALTV.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcringcsetcALTV.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) |
Ref | Expression |
---|---|
funcringcsetclem7ALTV | β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = ((Idβπ)β(πΉβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.r | . . . . 5 β’ π = (RingCatALTVβπ) | |
2 | funcringcsetcALTV.s | . . . . 5 β’ π = (SetCatβπ) | |
3 | funcringcsetcALTV.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
4 | funcringcsetcALTV.c | . . . . 5 β’ πΆ = (Baseβπ) | |
5 | funcringcsetcALTV.u | . . . . 5 β’ (π β π β WUni) | |
6 | funcringcsetcALTV.f | . . . . 5 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
7 | funcringcsetcALTV.g | . . . . 5 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetclem5ALTV 47491 | . . . 4 β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΊπ) = ( I βΎ (π RingHom π))) |
9 | 8 | anabsan2 672 | . . 3 β’ ((π β§ π β π΅) β (ππΊπ) = ( I βΎ (π RingHom π))) |
10 | eqid 2725 | . . . 4 β’ (Idβπ ) = (Idβπ ) | |
11 | 5 | adantr 479 | . . . 4 β’ ((π β§ π β π΅) β π β WUni) |
12 | simpr 483 | . . . 4 β’ ((π β§ π β π΅) β π β π΅) | |
13 | eqid 2725 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
14 | 1, 3, 10, 11, 12, 13 | ringcidALTV 47482 | . . 3 β’ ((π β§ π β π΅) β ((Idβπ )βπ) = ( I βΎ (Baseβπ))) |
15 | 9, 14 | fveq12d 6901 | . 2 β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = (( I βΎ (π RingHom π))β( I βΎ (Baseβπ)))) |
16 | 1, 3, 5 | ringcbasALTV 47474 | . . . . . 6 β’ (π β π΅ = (π β© Ring)) |
17 | 16 | eleq2d 2811 | . . . . 5 β’ (π β (π β π΅ β π β (π β© Ring))) |
18 | elin 3961 | . . . . . 6 β’ (π β (π β© Ring) β (π β π β§ π β Ring)) | |
19 | 18 | simprbi 495 | . . . . 5 β’ (π β (π β© Ring) β π β Ring) |
20 | 17, 19 | biimtrdi 252 | . . . 4 β’ (π β (π β π΅ β π β Ring)) |
21 | 20 | imp 405 | . . 3 β’ ((π β§ π β π΅) β π β Ring) |
22 | 13 | idrhm 20433 | . . 3 β’ (π β Ring β ( I βΎ (Baseβπ)) β (π RingHom π)) |
23 | fvresi 7180 | . . 3 β’ (( I βΎ (Baseβπ)) β (π RingHom π) β (( I βΎ (π RingHom π))β( I βΎ (Baseβπ))) = ( I βΎ (Baseβπ))) | |
24 | 21, 22, 23 | 3syl 18 | . 2 β’ ((π β§ π β π΅) β (( I βΎ (π RingHom π))β( I βΎ (Baseβπ))) = ( I βΎ (Baseβπ))) |
25 | 1, 2, 3, 4, 5, 6 | funcringcsetclem1ALTV 47487 | . . . 4 β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
26 | 25 | fveq2d 6898 | . . 3 β’ ((π β§ π β π΅) β ((Idβπ)β(πΉβπ)) = ((Idβπ)β(Baseβπ))) |
27 | eqid 2725 | . . . 4 β’ (Idβπ) = (Idβπ) | |
28 | 1, 3, 5 | ringcbasbasALTV 47486 | . . . 4 β’ ((π β§ π β π΅) β (Baseβπ) β π) |
29 | 2, 27, 11, 28 | setcid 18074 | . . 3 β’ ((π β§ π β π΅) β ((Idβπ)β(Baseβπ)) = ( I βΎ (Baseβπ))) |
30 | 26, 29 | eqtr2d 2766 | . 2 β’ ((π β§ π β π΅) β ( I βΎ (Baseβπ)) = ((Idβπ)β(πΉβπ))) |
31 | 15, 24, 30 | 3eqtrd 2769 | 1 β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = ((Idβπ)β(πΉβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β© cin 3944 β¦ cmpt 5231 I cid 5574 βΎ cres 5679 βcfv 6547 (class class class)co 7417 β cmpo 7419 WUnicwun 10723 Basecbs 17179 Idccid 17644 SetCatcsetc 18063 Ringcrg 20177 RingHom crh 20412 RingCatALTVcringcALTV 47461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-wun 10725 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-hom 17256 df-cco 17257 df-0g 17422 df-cat 17647 df-cid 17648 df-setc 18064 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18897 df-ghm 19172 df-mgp 20079 df-ur 20126 df-ring 20179 df-rhm 20415 df-ringcALTV 47462 |
This theorem is referenced by: funcringcsetcALTV 47496 |
Copyright terms: Public domain | W3C validator |