Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem7ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem7ALTV 45602
Description: Lemma 7 for funcringcsetcALTV 45605. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem7ALTV ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetclem7ALTV
StepHypRef Expression
1 funcringcsetcALTV.r . . . . 5 𝑅 = (RingCatALTV‘𝑈)
2 funcringcsetcALTV.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcringcsetcALTV.b . . . . 5 𝐵 = (Base‘𝑅)
4 funcringcsetcALTV.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcringcsetcALTV.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcringcsetcALTV.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcringcsetcALTV.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
81, 2, 3, 4, 5, 6, 7funcringcsetclem5ALTV 45600 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑋𝐵)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋)))
98anabsan2 671 . . 3 ((𝜑𝑋𝐵) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋)))
10 eqid 2740 . . . 4 (Id‘𝑅) = (Id‘𝑅)
115adantr 481 . . . 4 ((𝜑𝑋𝐵) → 𝑈 ∈ WUni)
12 simpr 485 . . . 4 ((𝜑𝑋𝐵) → 𝑋𝐵)
13 eqid 2740 . . . 4 (Base‘𝑋) = (Base‘𝑋)
141, 3, 10, 11, 12, 13ringcidALTV 45591 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑅)‘𝑋) = ( I ↾ (Base‘𝑋)))
159, 14fveq12d 6778 . 2 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))))
161, 3, 5ringcbasALTV 45583 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Ring))
1716eleq2d 2826 . . . . 5 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Ring)))
18 elin 3908 . . . . . 6 (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋𝑈𝑋 ∈ Ring))
1918simprbi 497 . . . . 5 (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ Ring)
2017, 19syl6bi 252 . . . 4 (𝜑 → (𝑋𝐵𝑋 ∈ Ring))
2120imp 407 . . 3 ((𝜑𝑋𝐵) → 𝑋 ∈ Ring)
2213idrhm 19986 . . 3 (𝑋 ∈ Ring → ( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋))
23 fvresi 7042 . . 3 (( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
2421, 22, 233syl 18 . 2 ((𝜑𝑋𝐵) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
251, 2, 3, 4, 5, 6funcringcsetclem1ALTV 45596 . . . 4 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2625fveq2d 6775 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(𝐹𝑋)) = ((Id‘𝑆)‘(Base‘𝑋)))
27 eqid 2740 . . . 4 (Id‘𝑆) = (Id‘𝑆)
281, 3, 5ringcbasbasALTV 45595 . . . 4 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ 𝑈)
292, 27, 11, 28setcid 17812 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋)))
3026, 29eqtr2d 2781 . 2 ((𝜑𝑋𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
3115, 24, 303eqtrd 2784 1 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cin 3891  cmpt 5162   I cid 5489  cres 5592  cfv 6432  (class class class)co 7272  cmpo 7274  WUnicwun 10467  Basecbs 16923  Idccid 17385  SetCatcsetc 17801  Ringcrg 19794   RingHom crh 19967  RingCatALTVcringcALTV 45541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-wun 10469  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-fz 13251  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-plusg 16986  df-hom 16997  df-cco 16998  df-0g 17163  df-cat 17388  df-cid 17389  df-setc 17802  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-grp 18591  df-ghm 18843  df-mgp 19732  df-ur 19749  df-ring 19796  df-rnghom 19970  df-ringcALTV 45543
This theorem is referenced by:  funcringcsetcALTV  45605
  Copyright terms: Public domain W3C validator