![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem7ALTV | Structured version Visualization version GIF version |
Description: Lemma 7 for funcringcsetcALTV 46919. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | β’ π = (RingCatALTVβπ) |
funcringcsetcALTV.s | β’ π = (SetCatβπ) |
funcringcsetcALTV.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV.u | β’ (π β π β WUni) |
funcringcsetcALTV.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcringcsetcALTV.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) |
Ref | Expression |
---|---|
funcringcsetclem7ALTV | β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = ((Idβπ)β(πΉβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.r | . . . . 5 β’ π = (RingCatALTVβπ) | |
2 | funcringcsetcALTV.s | . . . . 5 β’ π = (SetCatβπ) | |
3 | funcringcsetcALTV.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
4 | funcringcsetcALTV.c | . . . . 5 β’ πΆ = (Baseβπ) | |
5 | funcringcsetcALTV.u | . . . . 5 β’ (π β π β WUni) | |
6 | funcringcsetcALTV.f | . . . . 5 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
7 | funcringcsetcALTV.g | . . . . 5 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetclem5ALTV 46914 | . . . 4 β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΊπ) = ( I βΎ (π RingHom π))) |
9 | 8 | anabsan2 672 | . . 3 β’ ((π β§ π β π΅) β (ππΊπ) = ( I βΎ (π RingHom π))) |
10 | eqid 2732 | . . . 4 β’ (Idβπ ) = (Idβπ ) | |
11 | 5 | adantr 481 | . . . 4 β’ ((π β§ π β π΅) β π β WUni) |
12 | simpr 485 | . . . 4 β’ ((π β§ π β π΅) β π β π΅) | |
13 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
14 | 1, 3, 10, 11, 12, 13 | ringcidALTV 46905 | . . 3 β’ ((π β§ π β π΅) β ((Idβπ )βπ) = ( I βΎ (Baseβπ))) |
15 | 9, 14 | fveq12d 6895 | . 2 β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = (( I βΎ (π RingHom π))β( I βΎ (Baseβπ)))) |
16 | 1, 3, 5 | ringcbasALTV 46897 | . . . . . 6 β’ (π β π΅ = (π β© Ring)) |
17 | 16 | eleq2d 2819 | . . . . 5 β’ (π β (π β π΅ β π β (π β© Ring))) |
18 | elin 3963 | . . . . . 6 β’ (π β (π β© Ring) β (π β π β§ π β Ring)) | |
19 | 18 | simprbi 497 | . . . . 5 β’ (π β (π β© Ring) β π β Ring) |
20 | 17, 19 | syl6bi 252 | . . . 4 β’ (π β (π β π΅ β π β Ring)) |
21 | 20 | imp 407 | . . 3 β’ ((π β§ π β π΅) β π β Ring) |
22 | 13 | idrhm 20260 | . . 3 β’ (π β Ring β ( I βΎ (Baseβπ)) β (π RingHom π)) |
23 | fvresi 7167 | . . 3 β’ (( I βΎ (Baseβπ)) β (π RingHom π) β (( I βΎ (π RingHom π))β( I βΎ (Baseβπ))) = ( I βΎ (Baseβπ))) | |
24 | 21, 22, 23 | 3syl 18 | . 2 β’ ((π β§ π β π΅) β (( I βΎ (π RingHom π))β( I βΎ (Baseβπ))) = ( I βΎ (Baseβπ))) |
25 | 1, 2, 3, 4, 5, 6 | funcringcsetclem1ALTV 46910 | . . . 4 β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
26 | 25 | fveq2d 6892 | . . 3 β’ ((π β§ π β π΅) β ((Idβπ)β(πΉβπ)) = ((Idβπ)β(Baseβπ))) |
27 | eqid 2732 | . . . 4 β’ (Idβπ) = (Idβπ) | |
28 | 1, 3, 5 | ringcbasbasALTV 46909 | . . . 4 β’ ((π β§ π β π΅) β (Baseβπ) β π) |
29 | 2, 27, 11, 28 | setcid 18032 | . . 3 β’ ((π β§ π β π΅) β ((Idβπ)β(Baseβπ)) = ( I βΎ (Baseβπ))) |
30 | 26, 29 | eqtr2d 2773 | . 2 β’ ((π β§ π β π΅) β ( I βΎ (Baseβπ)) = ((Idβπ)β(πΉβπ))) |
31 | 15, 24, 30 | 3eqtrd 2776 | 1 β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = ((Idβπ)β(πΉβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 β¦ cmpt 5230 I cid 5572 βΎ cres 5677 βcfv 6540 (class class class)co 7405 β cmpo 7407 WUnicwun 10691 Basecbs 17140 Idccid 17605 SetCatcsetc 18021 Ringcrg 20049 RingHom crh 20240 RingCatALTVcringcALTV 46855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-wun 10693 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-hom 17217 df-cco 17218 df-0g 17383 df-cat 17608 df-cid 17609 df-setc 18022 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 df-ringcALTV 46857 |
This theorem is referenced by: funcringcsetcALTV 46919 |
Copyright terms: Public domain | W3C validator |