Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvsdi Structured version   Visualization version   GIF version

Theorem slmdvsdi 31513
Description: Distributive law for scalar product. (ax-hvdistr1 29415 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvsdi.v 𝑉 = (Base‘𝑊)
slmdvsdi.a + = (+g𝑊)
slmdvsdi.f 𝐹 = (Scalar‘𝑊)
slmdvsdi.s · = ( ·𝑠𝑊)
slmdvsdi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
slmdvsdi ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))

Proof of Theorem slmdvsdi
StepHypRef Expression
1 slmdvsdi.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
2 slmdvsdi.a . . . . . . . . 9 + = (+g𝑊)
3 slmdvsdi.s . . . . . . . . 9 · = ( ·𝑠𝑊)
4 eqid 2736 . . . . . . . . 9 (0g𝑊) = (0g𝑊)
5 slmdvsdi.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
6 slmdvsdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
7 eqid 2736 . . . . . . . . 9 (+g𝐹) = (+g𝐹)
8 eqid 2736 . . . . . . . . 9 (.r𝐹) = (.r𝐹)
9 eqid 2736 . . . . . . . . 9 (1r𝐹) = (1r𝐹)
10 eqid 2736 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10slmdlema 31501 . . . . . . . 8 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊))))
1211simpld 496 . . . . . . 7 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))))
1312simp2d 1143 . . . . . 6 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
14133expia 1121 . . . . 5 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾)) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1514anabsan2 672 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑅𝐾) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1615exp4b 432 . . 3 (𝑊 ∈ SLMod → (𝑅𝐾 → (𝑌𝑉 → (𝑋𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
1716com34 91 . 2 (𝑊 ∈ SLMod → (𝑅𝐾 → (𝑋𝑉 → (𝑌𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
18173imp2 1349 1 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  Basecbs 16957  +gcplusg 17007  .rcmulr 17008  Scalarcsca 17010   ·𝑠 cvsca 17011  0gc0g 17195  1rcur 19782  SLModcslmd 31498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310  df-slmd 31499
This theorem is referenced by:  gsumvsca1  31524
  Copyright terms: Public domain W3C validator