Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvsdi Structured version   Visualization version   GIF version

Theorem slmdvsdi 33174
Description: Distributive law for scalar product. (ax-hvdistr1 30943 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvsdi.v 𝑉 = (Base‘𝑊)
slmdvsdi.a + = (+g𝑊)
slmdvsdi.f 𝐹 = (Scalar‘𝑊)
slmdvsdi.s · = ( ·𝑠𝑊)
slmdvsdi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
slmdvsdi ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))

Proof of Theorem slmdvsdi
StepHypRef Expression
1 slmdvsdi.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
2 slmdvsdi.a . . . . . . . . 9 + = (+g𝑊)
3 slmdvsdi.s . . . . . . . . 9 · = ( ·𝑠𝑊)
4 eqid 2730 . . . . . . . . 9 (0g𝑊) = (0g𝑊)
5 slmdvsdi.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
6 slmdvsdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
7 eqid 2730 . . . . . . . . 9 (+g𝐹) = (+g𝐹)
8 eqid 2730 . . . . . . . . 9 (.r𝐹) = (.r𝐹)
9 eqid 2730 . . . . . . . . 9 (1r𝐹) = (1r𝐹)
10 eqid 2730 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10slmdlema 33162 . . . . . . . 8 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊))))
1211simpld 494 . . . . . . 7 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))))
1312simp2d 1143 . . . . . 6 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
14133expia 1121 . . . . 5 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾)) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1514anabsan2 674 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑅𝐾) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1615exp4b 430 . . 3 (𝑊 ∈ SLMod → (𝑅𝐾 → (𝑌𝑉 → (𝑋𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
1716com34 91 . 2 (𝑊 ∈ SLMod → (𝑅𝐾 → (𝑋𝑉 → (𝑌𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
18173imp2 1350 1 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408  1rcur 20096  SLModcslmd 33159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-slmd 33160
This theorem is referenced by:  gsumvsca1  33185
  Copyright terms: Public domain W3C validator