![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product. (ax-hvdistr1 28437 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
slmdvsdi.a | ⊢ + = (+g‘𝑊) |
slmdvsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
slmdvsdi | ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdvsdi.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | slmdvsdi.a | . . . . . . . . 9 ⊢ + = (+g‘𝑊) | |
3 | slmdvsdi.s | . . . . . . . . 9 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | eqid 2778 | . . . . . . . . 9 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | slmdvsdi.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | slmdvsdi.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
7 | eqid 2778 | . . . . . . . . 9 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
8 | eqid 2778 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
9 | eqid 2778 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | eqid 2778 | . . . . . . . . 9 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | slmdlema 30318 | . . . . . . . 8 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
12 | 11 | simpld 490 | . . . . . . 7 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)))) |
13 | 12 | simp2d 1134 | . . . . . 6 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
14 | 13 | 3expia 1111 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
15 | 14 | anabsan2 664 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
16 | 15 | exp4b 423 | . . 3 ⊢ (𝑊 ∈ SLMod → (𝑅 ∈ 𝐾 → (𝑌 ∈ 𝑉 → (𝑋 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
17 | 16 | com34 91 | . 2 ⊢ (𝑊 ∈ SLMod → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → (𝑌 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
18 | 17 | 3imp2 1411 | 1 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 .rcmulr 16339 Scalarcsca 16341 ·𝑠 cvsca 16342 0gc0g 16486 1rcur 18888 SLModcslmd 30315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-ov 6925 df-slmd 30316 |
This theorem is referenced by: gsumvsca1 30344 |
Copyright terms: Public domain | W3C validator |