Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 658 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan2 672 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: 3impdir 1351 oawordri 8412 omwordri 8434 oeordsuc 8456 phplem2 9029 phplem4OLD 9041 muladd 11453 iccshftr 13264 iccshftl 13266 iccdil 13268 icccntr 13270 fzaddel 13336 fzsubel 13338 modadd1 13674 modmul1 13690 mulexp 13868 faclbnd5 14058 upxp 22819 uptx 22821 brbtwn2 27318 colinearalg 27323 eleesub 27324 eleesubd 27325 axcgrrflx 27327 axcgrid 27329 axsegconlem2 27331 phoeqi 29264 hial2eq2 29514 spansncvi 30059 5oalem3 30063 5oalem5 30065 hoscl 30152 hoeq1 30237 hoeq2 30238 hmops 30427 leopadd 30539 mdsymlem5 30814 lineintmo 34504 matunitlindflem1 35817 heicant 35856 ftc1anclem3 35896 ftc1anclem4 35897 ftc1anclem6 35899 ftc1anclem7 35900 ftc1anclem8 35901 ftc1anc 35902 |
Copyright terms: Public domain | W3C validator |