| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan2 674 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdir 1352 oawordri 8514 omwordri 8536 oeordsuc 8558 phplem2 9169 muladd 11610 iccshftr 13447 iccshftl 13449 iccdil 13451 icccntr 13453 fzaddel 13519 fzsubel 13521 modadd1 13870 modmul1 13889 mulexp 14066 faclbnd5 14263 upxp 23510 uptx 23512 brbtwn2 28832 colinearalg 28837 eleesub 28838 eleesubd 28839 axcgrrflx 28841 axcgrid 28843 axsegconlem2 28845 phoeqi 30786 hial2eq2 31036 spansncvi 31581 5oalem3 31585 5oalem5 31587 hoscl 31674 hoeq1 31759 hoeq2 31760 hmops 31949 leopadd 32061 mdsymlem5 32336 lineintmo 36145 matunitlindflem1 37610 heicant 37649 ftc1anclem3 37689 ftc1anclem4 37690 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 |
| Copyright terms: Public domain | W3C validator |