| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan2 674 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdir 1352 oawordri 8474 omwordri 8496 oeordsuc 8518 phplem2 9124 muladd 11559 iccshftr 13396 iccshftl 13398 iccdil 13400 icccntr 13402 fzaddel 13468 fzsubel 13470 modadd1 13822 modmul1 13841 mulexp 14018 faclbnd5 14215 upxp 23548 uptx 23550 brbtwn2 28894 colinearalg 28899 eleesub 28900 eleesubd 28901 axcgrrflx 28903 axcgrid 28905 axsegconlem2 28907 phoeqi 30848 hial2eq2 31098 spansncvi 31643 5oalem3 31647 5oalem5 31649 hoscl 31736 hoeq1 31821 hoeq2 31822 hmops 32011 leopadd 32123 mdsymlem5 32398 lineintmo 36212 matunitlindflem1 37666 heicant 37705 ftc1anclem3 37745 ftc1anclem4 37746 ftc1anclem6 37748 ftc1anclem7 37749 ftc1anclem8 37750 ftc1anc 37751 |
| Copyright terms: Public domain | W3C validator |