| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan2 674 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdir 1352 oawordri 8475 omwordri 8497 oeordsuc 8519 phplem2 9129 muladd 11570 iccshftr 13407 iccshftl 13409 iccdil 13411 icccntr 13413 fzaddel 13479 fzsubel 13481 modadd1 13830 modmul1 13849 mulexp 14026 faclbnd5 14223 upxp 23526 uptx 23528 brbtwn2 28868 colinearalg 28873 eleesub 28874 eleesubd 28875 axcgrrflx 28877 axcgrid 28879 axsegconlem2 28881 phoeqi 30819 hial2eq2 31069 spansncvi 31614 5oalem3 31618 5oalem5 31620 hoscl 31707 hoeq1 31792 hoeq2 31793 hmops 31982 leopadd 32094 mdsymlem5 32369 lineintmo 36130 matunitlindflem1 37595 heicant 37634 ftc1anclem3 37674 ftc1anclem4 37675 ftc1anclem6 37677 ftc1anclem7 37678 ftc1anclem8 37679 ftc1anc 37680 |
| Copyright terms: Public domain | W3C validator |