Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 656 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan2 670 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 3impdir 1349 oawordri 8357 omwordri 8379 oeordsuc 8401 phplem2 8955 phplem4OLD 8968 muladd 11390 iccshftr 13200 iccshftl 13202 iccdil 13204 icccntr 13206 fzaddel 13272 fzsubel 13274 modadd1 13609 modmul1 13625 mulexp 13803 faclbnd5 13993 upxp 22755 uptx 22757 brbtwn2 27254 colinearalg 27259 eleesub 27260 eleesubd 27261 axcgrrflx 27263 axcgrid 27265 axsegconlem2 27267 phoeqi 29198 hial2eq2 29448 spansncvi 29993 5oalem3 29997 5oalem5 29999 hoscl 30086 hoeq1 30171 hoeq2 30172 hmops 30361 leopadd 30473 mdsymlem5 30748 lineintmo 34438 matunitlindflem1 35752 heicant 35791 ftc1anclem3 35831 ftc1anclem4 35832 ftc1anclem6 35834 ftc1anclem7 35835 ftc1anclem8 35836 ftc1anc 35837 |
Copyright terms: Public domain | W3C validator |