| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan2 674 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdir 1352 oawordri 8562 omwordri 8584 oeordsuc 8606 phplem2 9219 muladd 11669 iccshftr 13503 iccshftl 13505 iccdil 13507 icccntr 13509 fzaddel 13575 fzsubel 13577 modadd1 13925 modmul1 13942 mulexp 14119 faclbnd5 14316 upxp 23561 uptx 23563 brbtwn2 28884 colinearalg 28889 eleesub 28890 eleesubd 28891 axcgrrflx 28893 axcgrid 28895 axsegconlem2 28897 phoeqi 30838 hial2eq2 31088 spansncvi 31633 5oalem3 31637 5oalem5 31639 hoscl 31726 hoeq1 31811 hoeq2 31812 hmops 32001 leopadd 32113 mdsymlem5 32388 lineintmo 36175 matunitlindflem1 37640 heicant 37679 ftc1anclem3 37719 ftc1anclem4 37720 ftc1anclem6 37722 ftc1anclem7 37723 ftc1anclem8 37724 ftc1anc 37725 |
| Copyright terms: Public domain | W3C validator |