| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan2 674 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdir 1352 oawordri 8517 omwordri 8539 oeordsuc 8561 phplem2 9175 muladd 11617 iccshftr 13454 iccshftl 13456 iccdil 13458 icccntr 13460 fzaddel 13526 fzsubel 13528 modadd1 13877 modmul1 13896 mulexp 14073 faclbnd5 14270 upxp 23517 uptx 23519 brbtwn2 28839 colinearalg 28844 eleesub 28845 eleesubd 28846 axcgrrflx 28848 axcgrid 28850 axsegconlem2 28852 phoeqi 30793 hial2eq2 31043 spansncvi 31588 5oalem3 31592 5oalem5 31594 hoscl 31681 hoeq1 31766 hoeq2 31767 hmops 31956 leopadd 32068 mdsymlem5 32343 lineintmo 36152 matunitlindflem1 37617 heicant 37656 ftc1anclem3 37696 ftc1anclem4 37697 ftc1anclem6 37699 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 |
| Copyright terms: Public domain | W3C validator |