| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan2 674 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdir 1352 oawordri 8460 omwordri 8482 oeordsuc 8504 phplem2 9109 muladd 11541 iccshftr 13378 iccshftl 13380 iccdil 13382 icccntr 13384 fzaddel 13450 fzsubel 13452 modadd1 13804 modmul1 13823 mulexp 14000 faclbnd5 14197 upxp 23531 uptx 23533 brbtwn2 28876 colinearalg 28881 eleesub 28882 eleesubd 28883 axcgrrflx 28885 axcgrid 28887 axsegconlem2 28889 phoeqi 30827 hial2eq2 31077 spansncvi 31622 5oalem3 31626 5oalem5 31628 hoscl 31715 hoeq1 31800 hoeq2 31801 hmops 31990 leopadd 32102 mdsymlem5 32377 lineintmo 36170 matunitlindflem1 37635 heicant 37674 ftc1anclem3 37714 ftc1anclem4 37715 ftc1anclem6 37717 ftc1anclem7 37718 ftc1anclem8 37719 ftc1anc 37720 |
| Copyright terms: Public domain | W3C validator |