![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 659 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan2 673 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 3impdir 1351 oawordri 8606 omwordri 8628 oeordsuc 8650 phplem2 9271 phplem4OLD 9283 muladd 11722 iccshftr 13546 iccshftl 13548 iccdil 13550 icccntr 13552 fzaddel 13618 fzsubel 13620 modadd1 13959 modmul1 13975 mulexp 14152 faclbnd5 14347 upxp 23652 uptx 23654 brbtwn2 28938 colinearalg 28943 eleesub 28944 eleesubd 28945 axcgrrflx 28947 axcgrid 28949 axsegconlem2 28951 phoeqi 30889 hial2eq2 31139 spansncvi 31684 5oalem3 31688 5oalem5 31690 hoscl 31777 hoeq1 31862 hoeq2 31863 hmops 32052 leopadd 32164 mdsymlem5 32439 lineintmo 36121 matunitlindflem1 37576 heicant 37615 ftc1anclem3 37655 ftc1anclem4 37656 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 |
Copyright terms: Public domain | W3C validator |