![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcringcsetcALTV2 47274. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.r | . . . . 5 ⊢ 𝑅 = (RingCat‘𝑈) | |
2 | funcringcsetcALTV2.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcringcsetcALTV2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | funcringcsetcALTV2.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcringcsetcALTV2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcringcsetcALTV2.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcringcsetcALTV2.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetcALTV2lem5 47269 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
9 | 8 | anabsan2 673 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
10 | eqid 2727 | . . . 4 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
11 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | eqid 2727 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
14 | 1, 3, 10, 11, 12, 13 | ringcid 20579 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑅)‘𝑋) = ( I ↾ (Base‘𝑋))) |
15 | 9, 14 | fveq12d 6898 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋)))) |
16 | 1, 3, 5 | ringcbas 20565 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
17 | 16 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
18 | elin 3960 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) | |
19 | 18 | simprbi 496 | . . . . 5 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ Ring) |
20 | 17, 19 | syl6bi 253 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ Ring)) |
21 | 20 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ Ring) |
22 | 13 | idrhm 20411 | . . 3 ⊢ (𝑋 ∈ Ring → ( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋)) |
23 | fvresi 7176 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
25 | 1, 2, 3, 4, 5, 6 | funcringcsetcALTV2lem1 47265 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
26 | 25 | fveq2d 6895 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
27 | eqid 2727 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
28 | 1, 3, 5 | ringcbasbas 20588 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
29 | 2, 27, 11, 28 | setcid 18060 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
30 | 26, 29 | eqtr2d 2768 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
31 | 15, 24, 30 | 3eqtrd 2771 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∩ cin 3943 ↦ cmpt 5225 I cid 5569 ↾ cres 5674 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 WUnicwun 10709 Basecbs 17165 Idccid 17630 SetCatcsetc 18049 Ringcrg 20157 RingHom crh 20390 RingCatcringc 20560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-wun 10711 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-fz 13503 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-hom 17242 df-cco 17243 df-0g 17408 df-cat 17633 df-cid 17634 df-homf 17635 df-ssc 17778 df-resc 17779 df-subc 17780 df-setc 18050 df-estrc 18098 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-mhm 18725 df-grp 18878 df-ghm 19152 df-mgp 20059 df-ur 20106 df-ring 20159 df-rhm 20393 df-ringc 20561 |
This theorem is referenced by: funcringcsetcALTV2 47274 |
Copyright terms: Public domain | W3C validator |