Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcringcsetcALTV2 45581. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.r | . . . . 5 ⊢ 𝑅 = (RingCat‘𝑈) | |
2 | funcringcsetcALTV2.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcringcsetcALTV2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | funcringcsetcALTV2.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcringcsetcALTV2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcringcsetcALTV2.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcringcsetcALTV2.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetcALTV2lem5 45576 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
9 | 8 | anabsan2 671 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
10 | eqid 2738 | . . . 4 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
11 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
12 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | eqid 2738 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
14 | 1, 3, 10, 11, 12, 13 | ringcid 45561 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑅)‘𝑋) = ( I ↾ (Base‘𝑋))) |
15 | 9, 14 | fveq12d 6773 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋)))) |
16 | 1, 3, 5 | ringcbas 45547 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
17 | 16 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
18 | elin 3902 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) | |
19 | 18 | simprbi 497 | . . . . 5 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ Ring) |
20 | 17, 19 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ Ring)) |
21 | 20 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ Ring) |
22 | 13 | idrhm 19985 | . . 3 ⊢ (𝑋 ∈ Ring → ( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋)) |
23 | fvresi 7037 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
25 | 1, 2, 3, 4, 5, 6 | funcringcsetcALTV2lem1 45572 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
26 | 25 | fveq2d 6770 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
27 | eqid 2738 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
28 | 1, 3, 5 | ringcbasbas 45570 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
29 | 2, 27, 11, 28 | setcid 17811 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
30 | 26, 29 | eqtr2d 2779 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
31 | 15, 24, 30 | 3eqtrd 2782 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3885 ↦ cmpt 5156 I cid 5483 ↾ cres 5586 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 WUnicwun 10466 Basecbs 16922 Idccid 17384 SetCatcsetc 17800 Ringcrg 19793 RingHom crh 19966 RingCatcringc 45539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-wun 10468 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-hom 16996 df-cco 16997 df-0g 17162 df-cat 17387 df-cid 17388 df-homf 17389 df-ssc 17532 df-resc 17533 df-subc 17534 df-setc 17801 df-estrc 17849 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-grp 18590 df-ghm 18842 df-mgp 19731 df-ur 19748 df-ring 19795 df-rnghom 19969 df-ringc 45541 |
This theorem is referenced by: funcringcsetcALTV2 45581 |
Copyright terms: Public domain | W3C validator |