Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for funcringcsetcALTV2 45661. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.r | . . . . 5 ⊢ 𝑅 = (RingCat‘𝑈) | |
2 | funcringcsetcALTV2.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcringcsetcALTV2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | funcringcsetcALTV2.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcringcsetcALTV2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcringcsetcALTV2.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcringcsetcALTV2.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetcALTV2lem5 45656 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
9 | 8 | anabsan2 672 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋))) |
10 | eqid 2736 | . . . 4 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
11 | 5 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑈 ∈ WUni) |
12 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | eqid 2736 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
14 | 1, 3, 10, 11, 12, 13 | ringcid 45641 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑅)‘𝑋) = ( I ↾ (Base‘𝑋))) |
15 | 9, 14 | fveq12d 6811 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋)))) |
16 | 1, 3, 5 | ringcbas 45627 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
17 | 16 | eleq2d 2822 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
18 | elin 3908 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) | |
19 | 18 | simprbi 498 | . . . . 5 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ Ring) |
20 | 17, 19 | syl6bi 253 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ Ring)) |
21 | 20 | imp 408 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ Ring) |
22 | 13 | idrhm 20020 | . . 3 ⊢ (𝑋 ∈ Ring → ( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋)) |
23 | fvresi 7077 | . . 3 ⊢ (( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) | |
24 | 21, 22, 23 | 3syl 18 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋))) |
25 | 1, 2, 3, 4, 5, 6 | funcringcsetcALTV2lem1 45652 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
26 | 25 | fveq2d 6808 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑆)‘(Base‘𝑋))) |
27 | eqid 2736 | . . . 4 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
28 | 1, 3, 5 | ringcbasbas 45650 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ 𝑈) |
29 | 2, 27, 11, 28 | setcid 17846 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋))) |
30 | 26, 29 | eqtr2d 2777 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
31 | 15, 24, 30 | 3eqtrd 2780 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ↦ cmpt 5164 I cid 5499 ↾ cres 5602 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 WUnicwun 10502 Basecbs 16957 Idccid 17419 SetCatcsetc 17835 Ringcrg 19828 RingHom crh 20001 RingCatcringc 45619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-wun 10504 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-hom 17031 df-cco 17032 df-0g 17197 df-cat 17422 df-cid 17423 df-homf 17424 df-ssc 17567 df-resc 17568 df-subc 17569 df-setc 17836 df-estrc 17884 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-grp 18625 df-ghm 18877 df-mgp 19766 df-ur 19783 df-ring 19830 df-rnghom 20004 df-ringc 45621 |
This theorem is referenced by: funcringcsetcALTV2 45661 |
Copyright terms: Public domain | W3C validator |