Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem7 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem7 44508
Description: Lemma 7 for funcringcsetcALTV2 44511. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2lem7 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2lem7
StepHypRef Expression
1 funcringcsetcALTV2.r . . . . 5 𝑅 = (RingCat‘𝑈)
2 funcringcsetcALTV2.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcringcsetcALTV2.b . . . . 5 𝐵 = (Base‘𝑅)
4 funcringcsetcALTV2.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcringcsetcALTV2.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcringcsetcALTV2.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcringcsetcALTV2.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
81, 2, 3, 4, 5, 6, 7funcringcsetcALTV2lem5 44506 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑋𝐵)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋)))
98anabsan2 673 . . 3 ((𝜑𝑋𝐵) → (𝑋𝐺𝑋) = ( I ↾ (𝑋 RingHom 𝑋)))
10 eqid 2824 . . . 4 (Id‘𝑅) = (Id‘𝑅)
115adantr 484 . . . 4 ((𝜑𝑋𝐵) → 𝑈 ∈ WUni)
12 simpr 488 . . . 4 ((𝜑𝑋𝐵) → 𝑋𝐵)
13 eqid 2824 . . . 4 (Base‘𝑋) = (Base‘𝑋)
141, 3, 10, 11, 12, 13ringcid 44491 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑅)‘𝑋) = ( I ↾ (Base‘𝑋)))
159, 14fveq12d 6658 . 2 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))))
161, 3, 5ringcbas 44477 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Ring))
1716eleq2d 2901 . . . . 5 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Ring)))
18 elin 3934 . . . . . 6 (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋𝑈𝑋 ∈ Ring))
1918simprbi 500 . . . . 5 (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ Ring)
2017, 19syl6bi 256 . . . 4 (𝜑 → (𝑋𝐵𝑋 ∈ Ring))
2120imp 410 . . 3 ((𝜑𝑋𝐵) → 𝑋 ∈ Ring)
2213idrhm 19472 . . 3 (𝑋 ∈ Ring → ( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋))
23 fvresi 6916 . . 3 (( I ↾ (Base‘𝑋)) ∈ (𝑋 RingHom 𝑋) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
2421, 22, 233syl 18 . 2 ((𝜑𝑋𝐵) → (( I ↾ (𝑋 RingHom 𝑋))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
251, 2, 3, 4, 5, 6funcringcsetcALTV2lem1 44502 . . . 4 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2625fveq2d 6655 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(𝐹𝑋)) = ((Id‘𝑆)‘(Base‘𝑋)))
27 eqid 2824 . . . 4 (Id‘𝑆) = (Id‘𝑆)
281, 3, 5ringcbasbas 44500 . . . 4 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ 𝑈)
292, 27, 11, 28setcid 17335 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋)))
3026, 29eqtr2d 2860 . 2 ((𝜑𝑋𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
3115, 24, 303eqtrd 2863 1 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cin 3917  cmpt 5127   I cid 5440  cres 5538  cfv 6336  (class class class)co 7138  cmpo 7140  WUnicwun 10107  Basecbs 16472  Idccid 16925  SetCatcsetc 17324  Ringcrg 19286   RingHom crh 19453  RingCatcringc 44469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-wun 10109  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-hom 16578  df-cco 16579  df-0g 16704  df-cat 16928  df-cid 16929  df-homf 16930  df-ssc 17069  df-resc 17070  df-subc 17071  df-setc 17325  df-estrc 17362  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-mhm 17945  df-grp 18095  df-ghm 18345  df-mgp 19229  df-ur 19241  df-ring 19288  df-rnghom 19456  df-ringc 44471
This theorem is referenced by:  funcringcsetcALTV2  44511
  Copyright terms: Public domain W3C validator