Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metider Structured version   Visualization version   GIF version

Theorem metider 33840
Description: The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metider (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)

Proof of Theorem metider
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metidss 33837 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
2 xpss 5716 . . . 4 (𝑋 × 𝑋) ⊆ (V × V)
31, 2sstrdi 4021 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (V × V))
4 df-rel 5707 . . 3 (Rel (~Met𝐷) ↔ (~Met𝐷) ⊆ (V × V))
53, 4sylibr 234 . 2 (𝐷 ∈ (PsMet‘𝑋) → Rel (~Met𝐷))
61ssbrd 5209 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑦𝑥(𝑋 × 𝑋)𝑦))
76imp 406 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑥(𝑋 × 𝑋)𝑦)
8 brxp 5749 . . . 4 (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥𝑋𝑦𝑋))
97, 8sylib 218 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → (𝑥𝑋𝑦𝑋))
10 psmetsym 24341 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
11103expb 1120 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1211eqeq1d 2742 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑥) = 0))
13 metidv 33838 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
14 metidv 33838 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1514ancom2s 649 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1612, 13, 153bitr4d 311 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1716biimpd 229 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1817impancom 451 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → ((𝑥𝑋𝑦𝑋) → 𝑦(~Met𝐷)𝑥))
199, 18mpd 15 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑦(~Met𝐷)𝑥)
20 simpl 482 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝐷 ∈ (PsMet‘𝑋))
21 simprr 772 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦(~Met𝐷)𝑧)
221ssbrd 5209 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝑦(~Met𝐷)𝑧𝑦(𝑋 × 𝑋)𝑧))
2322imp 406 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → 𝑦(𝑋 × 𝑋)𝑧)
24 brxp 5749 . . . . . . . . 9 (𝑦(𝑋 × 𝑋)𝑧 ↔ (𝑦𝑋𝑧𝑋))
2523, 24sylib 218 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → (𝑦𝑋𝑧𝑋))
2621, 25syldan 590 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝑋𝑧𝑋))
2726simpld 494 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦𝑋)
28 simprl 770 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑦)
2928, 9syldan 590 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝑋𝑦𝑋))
3029simpld 494 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥𝑋)
3126simprd 495 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑧𝑋)
32 psmettri2 24340 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3320, 27, 30, 31, 32syl13anc 1372 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3429, 11syldan 590 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
3529, 13syldan 590 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
3628, 35mpbid 232 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = 0)
3734, 36eqtr3d 2782 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑥) = 0)
38 metidv 33838 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
3926, 38syldan 590 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
4021, 39mpbid 232 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑧) = 0)
4137, 40oveq12d 7466 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = (0 +𝑒 0))
42 0xr 11337 . . . . . . 7 0 ∈ ℝ*
43 xaddrid 13303 . . . . . . 7 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4442, 43ax-mp 5 . . . . . 6 (0 +𝑒 0) = 0
4541, 44eqtrdi 2796 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = 0)
4633, 45breqtrd 5192 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ 0)
47 psmetge0 24343 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝐷𝑧))
4820, 30, 31, 47syl3anc 1371 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 0 ≤ (𝑥𝐷𝑧))
49 psmetcl 24338 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐷𝑧) ∈ ℝ*)
5020, 30, 31, 49syl3anc 1371 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ∈ ℝ*)
51 xrletri3 13216 . . . . 5 (((𝑥𝐷𝑧) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5250, 42, 51sylancl 585 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5346, 48, 52mpbir2and 712 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) = 0)
54 metidv 33838 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5520, 30, 31, 54syl12anc 836 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5653, 55mpbird 257 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑧)
57 psmet0 24339 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
58 metidv 33838 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑥𝑋)) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
5958anabsan2 673 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
6057, 59mpbird 257 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥(~Met𝐷)𝑥)
611ssbrd 5209 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑥𝑥(𝑋 × 𝑋)𝑥))
6261imp 406 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥(𝑋 × 𝑋)𝑥)
63 brxp 5749 . . . . 5 (𝑥(𝑋 × 𝑋)𝑥 ↔ (𝑥𝑋𝑥𝑋))
6462, 63sylib 218 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → (𝑥𝑋𝑥𝑋))
6564simpld 494 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥𝑋)
6660, 65impbida 800 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋𝑥(~Met𝐷)𝑥))
675, 19, 56, 66iserd 8789 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166   × cxp 5698  Rel wrel 5705  cfv 6573  (class class class)co 7448   Er wer 8760  0cc0 11184  *cxr 11323  cle 11325   +𝑒 cxad 13173  PsMetcpsmet 21371  ~Metcmetid 33832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-psmet 21379  df-metid 33834
This theorem is referenced by:  pstmxmet  33843
  Copyright terms: Public domain W3C validator