Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metider Structured version   Visualization version   GIF version

Theorem metider 31746
Description: The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metider (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)

Proof of Theorem metider
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metidss 31743 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
2 xpss 5596 . . . 4 (𝑋 × 𝑋) ⊆ (V × V)
31, 2sstrdi 3929 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (V × V))
4 df-rel 5587 . . 3 (Rel (~Met𝐷) ↔ (~Met𝐷) ⊆ (V × V))
53, 4sylibr 233 . 2 (𝐷 ∈ (PsMet‘𝑋) → Rel (~Met𝐷))
61ssbrd 5113 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑦𝑥(𝑋 × 𝑋)𝑦))
76imp 406 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑥(𝑋 × 𝑋)𝑦)
8 brxp 5627 . . . 4 (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥𝑋𝑦𝑋))
97, 8sylib 217 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → (𝑥𝑋𝑦𝑋))
10 psmetsym 23371 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
11103expb 1118 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1211eqeq1d 2740 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑥) = 0))
13 metidv 31744 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
14 metidv 31744 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1514ancom2s 646 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1612, 13, 153bitr4d 310 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1716biimpd 228 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1817impancom 451 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → ((𝑥𝑋𝑦𝑋) → 𝑦(~Met𝐷)𝑥))
199, 18mpd 15 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑦(~Met𝐷)𝑥)
20 simpl 482 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝐷 ∈ (PsMet‘𝑋))
21 simprr 769 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦(~Met𝐷)𝑧)
221ssbrd 5113 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝑦(~Met𝐷)𝑧𝑦(𝑋 × 𝑋)𝑧))
2322imp 406 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → 𝑦(𝑋 × 𝑋)𝑧)
24 brxp 5627 . . . . . . . . 9 (𝑦(𝑋 × 𝑋)𝑧 ↔ (𝑦𝑋𝑧𝑋))
2523, 24sylib 217 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → (𝑦𝑋𝑧𝑋))
2621, 25syldan 590 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝑋𝑧𝑋))
2726simpld 494 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦𝑋)
28 simprl 767 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑦)
2928, 9syldan 590 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝑋𝑦𝑋))
3029simpld 494 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥𝑋)
3126simprd 495 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑧𝑋)
32 psmettri2 23370 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3320, 27, 30, 31, 32syl13anc 1370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3429, 11syldan 590 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
3529, 13syldan 590 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
3628, 35mpbid 231 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = 0)
3734, 36eqtr3d 2780 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑥) = 0)
38 metidv 31744 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
3926, 38syldan 590 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
4021, 39mpbid 231 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑧) = 0)
4137, 40oveq12d 7273 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = (0 +𝑒 0))
42 0xr 10953 . . . . . . 7 0 ∈ ℝ*
43 xaddid1 12904 . . . . . . 7 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4442, 43ax-mp 5 . . . . . 6 (0 +𝑒 0) = 0
4541, 44eqtrdi 2795 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = 0)
4633, 45breqtrd 5096 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ 0)
47 psmetge0 23373 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝐷𝑧))
4820, 30, 31, 47syl3anc 1369 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 0 ≤ (𝑥𝐷𝑧))
49 psmetcl 23368 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐷𝑧) ∈ ℝ*)
5020, 30, 31, 49syl3anc 1369 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ∈ ℝ*)
51 xrletri3 12817 . . . . 5 (((𝑥𝐷𝑧) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5250, 42, 51sylancl 585 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5346, 48, 52mpbir2and 709 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) = 0)
54 metidv 31744 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5520, 30, 31, 54syl12anc 833 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5653, 55mpbird 256 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑧)
57 psmet0 23369 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
58 metidv 31744 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑥𝑋)) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
5958anabsan2 670 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
6057, 59mpbird 256 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥(~Met𝐷)𝑥)
611ssbrd 5113 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑥𝑥(𝑋 × 𝑋)𝑥))
6261imp 406 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥(𝑋 × 𝑋)𝑥)
63 brxp 5627 . . . . 5 (𝑥(𝑋 × 𝑋)𝑥 ↔ (𝑥𝑋𝑥𝑋))
6462, 63sylib 217 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → (𝑥𝑋𝑥𝑋))
6564simpld 494 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥𝑋)
6660, 65impbida 797 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋𝑥(~Met𝐷)𝑥))
675, 19, 56, 66iserd 8482 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070   × cxp 5578  Rel wrel 5585  cfv 6418  (class class class)co 7255   Er wer 8453  0cc0 10802  *cxr 10939  cle 10941   +𝑒 cxad 12775  PsMetcpsmet 20494  ~Metcmetid 31738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-psmet 20502  df-metid 31740
This theorem is referenced by:  pstmxmet  31749
  Copyright terms: Public domain W3C validator