Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metider Structured version   Visualization version   GIF version

Theorem metider 31134
Description: The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metider (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)

Proof of Theorem metider
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metidss 31131 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
2 xpss 5571 . . . 4 (𝑋 × 𝑋) ⊆ (V × V)
31, 2sstrdi 3979 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (V × V))
4 df-rel 5562 . . 3 (Rel (~Met𝐷) ↔ (~Met𝐷) ⊆ (V × V))
53, 4sylibr 236 . 2 (𝐷 ∈ (PsMet‘𝑋) → Rel (~Met𝐷))
61ssbrd 5109 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑦𝑥(𝑋 × 𝑋)𝑦))
76imp 409 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑥(𝑋 × 𝑋)𝑦)
8 brxp 5601 . . . 4 (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥𝑋𝑦𝑋))
97, 8sylib 220 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → (𝑥𝑋𝑦𝑋))
10 psmetsym 22920 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
11103expb 1116 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1211eqeq1d 2823 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑥) = 0))
13 metidv 31132 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
14 metidv 31132 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1514ancom2s 648 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1612, 13, 153bitr4d 313 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1716biimpd 231 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1817impancom 454 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → ((𝑥𝑋𝑦𝑋) → 𝑦(~Met𝐷)𝑥))
199, 18mpd 15 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑦(~Met𝐷)𝑥)
20 simpl 485 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝐷 ∈ (PsMet‘𝑋))
21 simprr 771 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦(~Met𝐷)𝑧)
221ssbrd 5109 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝑦(~Met𝐷)𝑧𝑦(𝑋 × 𝑋)𝑧))
2322imp 409 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → 𝑦(𝑋 × 𝑋)𝑧)
24 brxp 5601 . . . . . . . . 9 (𝑦(𝑋 × 𝑋)𝑧 ↔ (𝑦𝑋𝑧𝑋))
2523, 24sylib 220 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → (𝑦𝑋𝑧𝑋))
2621, 25syldan 593 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝑋𝑧𝑋))
2726simpld 497 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦𝑋)
28 simprl 769 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑦)
2928, 9syldan 593 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝑋𝑦𝑋))
3029simpld 497 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥𝑋)
3126simprd 498 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑧𝑋)
32 psmettri2 22919 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3320, 27, 30, 31, 32syl13anc 1368 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3429, 11syldan 593 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
3529, 13syldan 593 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
3628, 35mpbid 234 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = 0)
3734, 36eqtr3d 2858 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑥) = 0)
38 metidv 31132 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
3926, 38syldan 593 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
4021, 39mpbid 234 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑧) = 0)
4137, 40oveq12d 7174 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = (0 +𝑒 0))
42 0xr 10688 . . . . . . 7 0 ∈ ℝ*
43 xaddid1 12635 . . . . . . 7 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4442, 43ax-mp 5 . . . . . 6 (0 +𝑒 0) = 0
4541, 44syl6eq 2872 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = 0)
4633, 45breqtrd 5092 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ 0)
47 psmetge0 22922 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝐷𝑧))
4820, 30, 31, 47syl3anc 1367 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 0 ≤ (𝑥𝐷𝑧))
49 psmetcl 22917 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐷𝑧) ∈ ℝ*)
5020, 30, 31, 49syl3anc 1367 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ∈ ℝ*)
51 xrletri3 12548 . . . . 5 (((𝑥𝐷𝑧) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5250, 42, 51sylancl 588 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5346, 48, 52mpbir2and 711 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) = 0)
54 metidv 31132 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5520, 30, 31, 54syl12anc 834 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5653, 55mpbird 259 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑧)
57 psmet0 22918 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
58 metidv 31132 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑥𝑋)) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
5958anabsan2 672 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
6057, 59mpbird 259 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥(~Met𝐷)𝑥)
611ssbrd 5109 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑥𝑥(𝑋 × 𝑋)𝑥))
6261imp 409 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥(𝑋 × 𝑋)𝑥)
63 brxp 5601 . . . . 5 (𝑥(𝑋 × 𝑋)𝑥 ↔ (𝑥𝑋𝑥𝑋))
6462, 63sylib 220 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → (𝑥𝑋𝑥𝑋))
6564simpld 497 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥𝑋)
6660, 65impbida 799 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋𝑥(~Met𝐷)𝑥))
675, 19, 56, 66iserd 8315 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936   class class class wbr 5066   × cxp 5553  Rel wrel 5560  cfv 6355  (class class class)co 7156   Er wer 8286  0cc0 10537  *cxr 10674  cle 10676   +𝑒 cxad 12506  PsMetcpsmet 20529  ~Metcmetid 31126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-psmet 20537  df-metid 31128
This theorem is referenced by:  pstmxmet  31137
  Copyright terms: Public domain W3C validator