Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metider Structured version   Visualization version   GIF version

Theorem metider 31844
Description: The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metider (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)

Proof of Theorem metider
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metidss 31841 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
2 xpss 5605 . . . 4 (𝑋 × 𝑋) ⊆ (V × V)
31, 2sstrdi 3933 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (V × V))
4 df-rel 5596 . . 3 (Rel (~Met𝐷) ↔ (~Met𝐷) ⊆ (V × V))
53, 4sylibr 233 . 2 (𝐷 ∈ (PsMet‘𝑋) → Rel (~Met𝐷))
61ssbrd 5117 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑦𝑥(𝑋 × 𝑋)𝑦))
76imp 407 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑥(𝑋 × 𝑋)𝑦)
8 brxp 5636 . . . 4 (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥𝑋𝑦𝑋))
97, 8sylib 217 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → (𝑥𝑋𝑦𝑋))
10 psmetsym 23463 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
11103expb 1119 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1211eqeq1d 2740 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑥) = 0))
13 metidv 31842 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
14 metidv 31842 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1514ancom2s 647 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(~Met𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0))
1612, 13, 153bitr4d 311 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1716biimpd 228 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑥))
1817impancom 452 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → ((𝑥𝑋𝑦𝑋) → 𝑦(~Met𝐷)𝑥))
199, 18mpd 15 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑦) → 𝑦(~Met𝐷)𝑥)
20 simpl 483 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝐷 ∈ (PsMet‘𝑋))
21 simprr 770 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦(~Met𝐷)𝑧)
221ssbrd 5117 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝑦(~Met𝐷)𝑧𝑦(𝑋 × 𝑋)𝑧))
2322imp 407 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → 𝑦(𝑋 × 𝑋)𝑧)
24 brxp 5636 . . . . . . . . 9 (𝑦(𝑋 × 𝑋)𝑧 ↔ (𝑦𝑋𝑧𝑋))
2523, 24sylib 217 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met𝐷)𝑧) → (𝑦𝑋𝑧𝑋))
2621, 25syldan 591 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝑋𝑧𝑋))
2726simpld 495 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑦𝑋)
28 simprl 768 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑦)
2928, 9syldan 591 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝑋𝑦𝑋))
3029simpld 495 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥𝑋)
3126simprd 496 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑧𝑋)
32 psmettri2 23462 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3320, 27, 30, 31, 32syl13anc 1371 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)))
3429, 11syldan 591 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
3529, 13syldan 591 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0))
3628, 35mpbid 231 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑦) = 0)
3734, 36eqtr3d 2780 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑥) = 0)
38 metidv 31842 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
3926, 38syldan 591 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦(~Met𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0))
4021, 39mpbid 231 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑦𝐷𝑧) = 0)
4137, 40oveq12d 7293 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = (0 +𝑒 0))
42 0xr 11022 . . . . . . 7 0 ∈ ℝ*
43 xaddid1 12975 . . . . . . 7 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4442, 43ax-mp 5 . . . . . 6 (0 +𝑒 0) = 0
4541, 44eqtrdi 2794 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = 0)
4633, 45breqtrd 5100 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ 0)
47 psmetge0 23465 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝐷𝑧))
4820, 30, 31, 47syl3anc 1370 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 0 ≤ (𝑥𝐷𝑧))
49 psmetcl 23460 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐷𝑧) ∈ ℝ*)
5020, 30, 31, 49syl3anc 1370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) ∈ ℝ*)
51 xrletri3 12888 . . . . 5 (((𝑥𝐷𝑧) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5250, 42, 51sylancl 586 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧))))
5346, 48, 52mpbir2and 710 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥𝐷𝑧) = 0)
54 metidv 31842 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5520, 30, 31, 54syl12anc 834 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → (𝑥(~Met𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0))
5653, 55mpbird 256 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met𝐷)𝑦𝑦(~Met𝐷)𝑧)) → 𝑥(~Met𝐷)𝑧)
57 psmet0 23461 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
58 metidv 31842 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑥𝑋)) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
5958anabsan2 671 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥(~Met𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0))
6057, 59mpbird 256 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥(~Met𝐷)𝑥)
611ssbrd 5117 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met𝐷)𝑥𝑥(𝑋 × 𝑋)𝑥))
6261imp 407 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥(𝑋 × 𝑋)𝑥)
63 brxp 5636 . . . . 5 (𝑥(𝑋 × 𝑋)𝑥 ↔ (𝑥𝑋𝑥𝑋))
6462, 63sylib 217 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → (𝑥𝑋𝑥𝑋))
6564simpld 495 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met𝐷)𝑥) → 𝑥𝑋)
6660, 65impbida 798 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋𝑥(~Met𝐷)𝑥))
675, 19, 56, 66iserd 8524 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074   × cxp 5587  Rel wrel 5594  cfv 6433  (class class class)co 7275   Er wer 8495  0cc0 10871  *cxr 11008  cle 11010   +𝑒 cxad 12846  PsMetcpsmet 20581  ~Metcmetid 31836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-psmet 20589  df-metid 31838
This theorem is referenced by:  pstmxmet  31847
  Copyright terms: Public domain W3C validator