Step | Hyp | Ref
| Expression |
1 | | metidss 31743 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) →
(~Met‘𝐷)
⊆ (𝑋 × 𝑋)) |
2 | | xpss 5596 |
. . . 4
⊢ (𝑋 × 𝑋) ⊆ (V × V) |
3 | 1, 2 | sstrdi 3929 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) →
(~Met‘𝐷)
⊆ (V × V)) |
4 | | df-rel 5587 |
. . 3
⊢ (Rel
(~Met‘𝐷)
↔ (~Met‘𝐷) ⊆ (V × V)) |
5 | 3, 4 | sylibr 233 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → Rel
(~Met‘𝐷)) |
6 | 1 | ssbrd 5113 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met‘𝐷)𝑦 → 𝑥(𝑋 × 𝑋)𝑦)) |
7 | 6 | imp 406 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑦) → 𝑥(𝑋 × 𝑋)𝑦) |
8 | | brxp 5627 |
. . . 4
⊢ (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
9 | 7, 8 | sylib 217 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
10 | | psmetsym 23371 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
11 | 10 | 3expb 1118 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
12 | 11 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑥) = 0)) |
13 | | metidv 31744 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(~Met‘𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0)) |
14 | | metidv 31744 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑦(~Met‘𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0)) |
15 | 14 | ancom2s 646 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦(~Met‘𝐷)𝑥 ↔ (𝑦𝐷𝑥) = 0)) |
16 | 12, 13, 15 | 3bitr4d 310 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(~Met‘𝐷)𝑦 ↔ 𝑦(~Met‘𝐷)𝑥)) |
17 | 16 | biimpd 228 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(~Met‘𝐷)𝑦 → 𝑦(~Met‘𝐷)𝑥)) |
18 | 17 | impancom 451 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑦) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 𝑦(~Met‘𝐷)𝑥)) |
19 | 9, 18 | mpd 15 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑦) → 𝑦(~Met‘𝐷)𝑥) |
20 | | simpl 482 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝐷 ∈ (PsMet‘𝑋)) |
21 | | simprr 769 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝑦(~Met‘𝐷)𝑧) |
22 | 1 | ssbrd 5113 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑦(~Met‘𝐷)𝑧 → 𝑦(𝑋 × 𝑋)𝑧)) |
23 | 22 | imp 406 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met‘𝐷)𝑧) → 𝑦(𝑋 × 𝑋)𝑧) |
24 | | brxp 5627 |
. . . . . . . . 9
⊢ (𝑦(𝑋 × 𝑋)𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) |
25 | 23, 24 | sylib 217 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦(~Met‘𝐷)𝑧) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) |
26 | 21, 25 | syldan 590 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) |
27 | 26 | simpld 494 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝑦 ∈ 𝑋) |
28 | | simprl 767 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝑥(~Met‘𝐷)𝑦) |
29 | 28, 9 | syldan 590 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
30 | 29 | simpld 494 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝑥 ∈ 𝑋) |
31 | 26 | simprd 495 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝑧 ∈ 𝑋) |
32 | | psmettri2 23370 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧))) |
33 | 20, 27, 30, 31, 32 | syl13anc 1370 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧))) |
34 | 29, 11 | syldan 590 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
35 | 29, 13 | syldan 590 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥(~Met‘𝐷)𝑦 ↔ (𝑥𝐷𝑦) = 0)) |
36 | 28, 35 | mpbid 231 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥𝐷𝑦) = 0) |
37 | 34, 36 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑦𝐷𝑥) = 0) |
38 | | metidv 31744 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(~Met‘𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0)) |
39 | 26, 38 | syldan 590 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑦(~Met‘𝐷)𝑧 ↔ (𝑦𝐷𝑧) = 0)) |
40 | 21, 39 | mpbid 231 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑦𝐷𝑧) = 0) |
41 | 37, 40 | oveq12d 7273 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = (0 +𝑒
0)) |
42 | | 0xr 10953 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
43 | | xaddid1 12904 |
. . . . . . 7
⊢ (0 ∈
ℝ* → (0 +𝑒 0) = 0) |
44 | 42, 43 | ax-mp 5 |
. . . . . 6
⊢ (0
+𝑒 0) = 0 |
45 | 41, 44 | eqtrdi 2795 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → ((𝑦𝐷𝑥) +𝑒 (𝑦𝐷𝑧)) = 0) |
46 | 33, 45 | breqtrd 5096 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥𝐷𝑧) ≤ 0) |
47 | | psmetge0 23373 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑧)) |
48 | 20, 30, 31, 47 | syl3anc 1369 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 0 ≤ (𝑥𝐷𝑧)) |
49 | | psmetcl 23368 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑧) ∈
ℝ*) |
50 | 20, 30, 31, 49 | syl3anc 1369 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥𝐷𝑧) ∈
ℝ*) |
51 | | xrletri3 12817 |
. . . . 5
⊢ (((𝑥𝐷𝑧) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧)))) |
52 | 50, 42, 51 | sylancl 585 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → ((𝑥𝐷𝑧) = 0 ↔ ((𝑥𝐷𝑧) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑧)))) |
53 | 46, 48, 52 | mpbir2and 709 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥𝐷𝑧) = 0) |
54 | | metidv 31744 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥(~Met‘𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0)) |
55 | 20, 30, 31, 54 | syl12anc 833 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → (𝑥(~Met‘𝐷)𝑧 ↔ (𝑥𝐷𝑧) = 0)) |
56 | 53, 55 | mpbird 256 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥(~Met‘𝐷)𝑦 ∧ 𝑦(~Met‘𝐷)𝑧)) → 𝑥(~Met‘𝐷)𝑧) |
57 | | psmet0 23369 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷𝑥) = 0) |
58 | | metidv 31744 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥(~Met‘𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0)) |
59 | 58 | anabsan2 670 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥(~Met‘𝐷)𝑥 ↔ (𝑥𝐷𝑥) = 0)) |
60 | 57, 59 | mpbird 256 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥(~Met‘𝐷)𝑥) |
61 | 1 | ssbrd 5113 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥(~Met‘𝐷)𝑥 → 𝑥(𝑋 × 𝑋)𝑥)) |
62 | 61 | imp 406 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑥) → 𝑥(𝑋 × 𝑋)𝑥) |
63 | | brxp 5627 |
. . . . 5
⊢ (𝑥(𝑋 × 𝑋)𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) |
64 | 62, 63 | sylib 217 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑥) → (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) |
65 | 64 | simpld 494 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥(~Met‘𝐷)𝑥) → 𝑥 ∈ 𝑋) |
66 | 60, 65 | impbida 797 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋 ↔ 𝑥(~Met‘𝐷)𝑥)) |
67 | 5, 19, 56, 66 | iserd 8482 |
1
⊢ (𝐷 ∈ (PsMet‘𝑋) →
(~Met‘𝐷)
Er 𝑋) |