Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvsdir | Structured version Visualization version GIF version |
Description: Distributive law for scalar product. (ax-hvdistr1 29118 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvsdir.v | ⊢ 𝑉 = (Base‘𝑊) |
slmdvsdir.a | ⊢ + = (+g‘𝑊) |
slmdvsdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvsdir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvsdir.k | ⊢ 𝐾 = (Base‘𝐹) |
slmdvsdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
slmdvsdir | ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdvsdir.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
2 | slmdvsdir.a | . . . . . . . 8 ⊢ + = (+g‘𝑊) | |
3 | slmdvsdir.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | eqid 2739 | . . . . . . . 8 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | slmdvsdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | slmdvsdir.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
7 | slmdvsdir.p | . . . . . . . 8 ⊢ ⨣ = (+g‘𝐹) | |
8 | eqid 2739 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
9 | eqid 2739 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | eqid 2739 | . . . . . . . 8 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | slmdlema 31204 | . . . . . . 7 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
12 | 11 | simpld 498 | . . . . . 6 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))) |
13 | 12 | simp3d 1146 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
14 | 13 | 3expa 1120 | . . . 4 ⊢ (((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
15 | 14 | anabsan2 674 | . . 3 ⊢ (((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
16 | 15 | exp42 439 | . 2 ⊢ (𝑊 ∈ SLMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))))) |
17 | 16 | 3imp2 1351 | 1 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ‘cfv 6400 (class class class)co 7234 Basecbs 16790 +gcplusg 16832 .rcmulr 16833 Scalarcsca 16835 ·𝑠 cvsca 16836 0gc0g 16974 1rcur 19546 SLModcslmd 31201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-nul 5215 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3711 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-nul 4254 df-if 4456 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-br 5070 df-iota 6358 df-fv 6408 df-ov 7237 df-slmd 31202 |
This theorem is referenced by: gsumvsca2 31228 |
Copyright terms: Public domain | W3C validator |