Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvsdir | Structured version Visualization version GIF version |
Description: Distributive law for scalar product. (ax-hvdistr1 29349 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvsdir.v | ⊢ 𝑉 = (Base‘𝑊) |
slmdvsdir.a | ⊢ + = (+g‘𝑊) |
slmdvsdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvsdir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvsdir.k | ⊢ 𝐾 = (Base‘𝐹) |
slmdvsdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
slmdvsdir | ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdvsdir.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
2 | slmdvsdir.a | . . . . . . . 8 ⊢ + = (+g‘𝑊) | |
3 | slmdvsdir.s | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | eqid 2739 | . . . . . . . 8 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | slmdvsdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | slmdvsdir.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
7 | slmdvsdir.p | . . . . . . . 8 ⊢ ⨣ = (+g‘𝐹) | |
8 | eqid 2739 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
9 | eqid 2739 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | eqid 2739 | . . . . . . . 8 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | slmdlema 31435 | . . . . . . 7 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑄(.r‘𝐹)𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
12 | 11 | simpld 494 | . . . . . 6 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑋)) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))) |
13 | 12 | simp3d 1142 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
14 | 13 | 3expa 1116 | . . . 4 ⊢ (((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
15 | 14 | anabsan2 670 | . . 3 ⊢ (((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
16 | 15 | exp42 435 | . 2 ⊢ (𝑊 ∈ SLMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))))) |
17 | 16 | 3imp2 1347 | 1 ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 Scalarcsca 16946 ·𝑠 cvsca 16947 0gc0g 17131 1rcur 19718 SLModcslmd 31432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-slmd 31433 |
This theorem is referenced by: gsumvsca2 31459 |
Copyright terms: Public domain | W3C validator |