MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1ci Structured version   Visualization version   GIF version

Theorem anbi1ci 626
Description: Variant of anbi1i 624 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi1ci ((𝜒𝜑) ↔ (𝜓𝜒))

Proof of Theorem anbi1ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi2i 623 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
32biancomi 462 1 ((𝜒𝜑) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  dfid3  5521  imai  6029  frpoind  6294  dfac5lem3  10038  cf0  10164  eqscut2  27735  coep  35727  brtxp  35856  sscoid  35889  brapply  35914  dfrdg4  35927  wl-df4-3mintru2  37463  rnxrncnvepres  38374  rnxrnidres  38375  pmapglb  39752  polval2N  39888  rp-fakeoranass  43490  alephiso2  43534
  Copyright terms: Public domain W3C validator