MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1ci Structured version   Visualization version   GIF version

Theorem anbi1ci 627
Description: Variant of anbi1i 625 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi1ci ((𝜒𝜑) ↔ (𝜓𝜒))

Proof of Theorem anbi1ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi2i 624 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
32biancomi 464 1 ((𝜒𝜑) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  dfid3  5578  imai  6074  frpoind  6344  wfiOLD  6353  dfac5lem3  10120  cf0  10246  eqscut2  27307  coep  34722  brtxp  34852  sscoid  34885  brapply  34910  dfrdg4  34923  wl-df4-3mintru2  36368  rnxrncnvepres  37270  rnxrnidres  37271  pmapglb  38641  polval2N  38777  rp-fakeoranass  42265  alephiso2  42309
  Copyright terms: Public domain W3C validator