MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1ci Structured version   Visualization version   GIF version

Theorem anbi1ci 625
Description: Variant of anbi1i 623 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi1ci ((𝜒𝜑) ↔ (𝜓𝜒))

Proof of Theorem anbi1ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi2i 622 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
32biancomi 462 1 ((𝜒𝜑) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  dfid3  5596  imai  6103  frpoind  6374  wfiOLD  6383  dfac5lem3  10194  cf0  10320  eqscut2  27869  coep  35714  brtxp  35844  sscoid  35877  brapply  35902  dfrdg4  35915  wl-df4-3mintru2  37453  rnxrncnvepres  38356  rnxrnidres  38357  pmapglb  39727  polval2N  39863  rp-fakeoranass  43476  alephiso2  43520
  Copyright terms: Public domain W3C validator