![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi1ci | Structured version Visualization version GIF version |
Description: Variant of anbi1i 625 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1ci | ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi2i 624 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
3 | 2 | biancomi 464 | 1 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: dfid3 5578 imai 6074 frpoind 6344 wfiOLD 6353 dfac5lem3 10120 cf0 10246 eqscut2 27307 coep 34722 brtxp 34852 sscoid 34885 brapply 34910 dfrdg4 34923 wl-df4-3mintru2 36368 rnxrncnvepres 37270 rnxrnidres 37271 pmapglb 38641 polval2N 38777 rp-fakeoranass 42265 alephiso2 42309 |
Copyright terms: Public domain | W3C validator |