MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1ci Structured version   Visualization version   GIF version

Theorem anbi1ci 626
Description: Variant of anbi1i 624 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi1ci ((𝜒𝜑) ↔ (𝜓𝜒))

Proof of Theorem anbi1ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi2i 623 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
32biancomi 462 1 ((𝜒𝜑) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  dfid3  5536  imai  6045  frpoind  6315  dfac5lem3  10078  cf0  10204  eqscut2  27718  coep  35739  brtxp  35868  sscoid  35901  brapply  35926  dfrdg4  35939  wl-df4-3mintru2  37475  rnxrncnvepres  38386  rnxrnidres  38387  pmapglb  39764  polval2N  39900  rp-fakeoranass  43503  alephiso2  43547
  Copyright terms: Public domain W3C validator