![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi1ci | Structured version Visualization version GIF version |
Description: Variant of anbi1i 623 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1ci | ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi2i 622 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: dfid3 5596 imai 6103 frpoind 6374 wfiOLD 6383 dfac5lem3 10194 cf0 10320 eqscut2 27869 coep 35714 brtxp 35844 sscoid 35877 brapply 35902 dfrdg4 35915 wl-df4-3mintru2 37453 rnxrncnvepres 38356 rnxrnidres 38357 pmapglb 39727 polval2N 39863 rp-fakeoranass 43476 alephiso2 43520 |
Copyright terms: Public domain | W3C validator |