![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi1ci | Structured version Visualization version GIF version |
Description: Variant of anbi1i 617 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1ci | ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi2i 616 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
3 | 2 | biancomi 456 | 1 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: dfid3 5264 imai 5734 wfi 5968 dfac5lem3 9283 cf0 9410 brtxp 32580 brapply 32638 dfrdg4 32651 rnxrncnvepres 34791 rnxrnidres 34792 |
Copyright terms: Public domain | W3C validator |