MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1ci Structured version   Visualization version   GIF version

Theorem anbi1ci 619
Description: Variant of anbi1i 617 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi1ci ((𝜒𝜑) ↔ (𝜓𝜒))

Proof of Theorem anbi1ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi2i 616 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
32biancomi 456 1 ((𝜒𝜑) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387
This theorem is referenced by:  dfid3  5264  imai  5734  wfi  5968  dfac5lem3  9283  cf0  9410  brtxp  32580  brapply  32638  dfrdg4  32651  rnxrncnvepres  34791  rnxrnidres  34792
  Copyright terms: Public domain W3C validator