Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi1ci | Structured version Visualization version GIF version |
Description: Variant of anbi1i 624 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1ci | ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi2i 623 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
3 | 2 | biancomi 463 | 1 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: dfid3 5492 imai 5982 frpoind 6245 wfiOLD 6254 dfac5lem3 9881 cf0 10007 coep 33719 eqscut2 34000 brtxp 34182 sscoid 34215 brapply 34240 dfrdg4 34253 wl-df4-3mintru2 35658 rnxrncnvepres 36526 rnxrnidres 36527 pmapglb 37784 polval2N 37920 rp-fakeoranass 41121 alephiso2 41165 |
Copyright terms: Public domain | W3C validator |