MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1ci Structured version   Visualization version   GIF version

Theorem anbi1ci 626
Description: Variant of anbi1i 624 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi1ci ((𝜒𝜑) ↔ (𝜓𝜒))

Proof of Theorem anbi1ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi2i 623 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
32biancomi 463 1 ((𝜒𝜑) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  dfid3  5492  imai  5982  frpoind  6245  wfiOLD  6254  dfac5lem3  9881  cf0  10007  coep  33719  eqscut2  34000  brtxp  34182  sscoid  34215  brapply  34240  dfrdg4  34253  wl-df4-3mintru2  35658  rnxrncnvepres  36526  rnxrnidres  36527  pmapglb  37784  polval2N  37920  rp-fakeoranass  41121  alephiso2  41165
  Copyright terms: Public domain W3C validator