Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso2 Structured version   Visualization version   GIF version

Theorem alephiso2 40733
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})

Proof of Theorem alephiso2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso 9601 . 2 ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})
2 iscard4 40717 . . . . . . . 8 ((card‘𝑥) = 𝑥𝑥 ∈ ran card)
32anbi1ci 629 . . . . . . 7 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥))
43abbii 2804 . . . . . 6 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
5 df-rab 3063 . . . . . 6 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
64, 5eqtr4i 2765 . . . . 5 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}
7 f1oeq3 6611 . . . . 5 ({𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} → (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
86, 7ax-mp 5 . . . 4 (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
9 alephon 9572 . . . . . . . . 9 (ℵ‘𝑧) ∈ On
10 epelg 5436 . . . . . . . . 9 ((ℵ‘𝑧) ∈ On → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
119, 10mp1i 13 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
12 alephord2 9579 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
13 alephord 9578 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1411, 12, 133bitr2d 310 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1514bibi2d 346 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1615ralbidva 3109 . . . . 5 (𝑦 ∈ On → (∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1716ralbiia 3080 . . . 4 (∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
188, 17anbi12i 630 . . 3 ((ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
19 df-isom 6349 . . 3 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))))
20 df-isom 6349 . . 3 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
2118, 19, 203bitr4i 306 . 2 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
221, 21mpbi 233 1 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2114  {cab 2717  wral 3054  {crab 3058  wss 3844   class class class wbr 5031   E cep 5434  ran crn 5527  Oncon0 6173  1-1-ontowf1o 6339  cfv 6340   Isom wiso 6341  ωcom 7602  csdm 8557  cardccrd 9440  cale 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-om 7603  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-oi 9050  df-har 9097  df-card 9444  df-aleph 9445
This theorem is referenced by:  alephiso3  40734
  Copyright terms: Public domain W3C validator