Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso2 Structured version   Visualization version   GIF version

Theorem alephiso2 43520
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})

Proof of Theorem alephiso2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso 10167 . 2 ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})
2 iscard4 43495 . . . . . . . 8 ((card‘𝑥) = 𝑥𝑥 ∈ ran card)
32anbi1ci 625 . . . . . . 7 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥))
43abbii 2812 . . . . . 6 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
5 df-rab 3444 . . . . . 6 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
64, 5eqtr4i 2771 . . . . 5 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}
7 f1oeq3 6852 . . . . 5 ({𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} → (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
86, 7ax-mp 5 . . . 4 (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
9 alephon 10138 . . . . . . . . 9 (ℵ‘𝑧) ∈ On
10 epelg 5600 . . . . . . . . 9 ((ℵ‘𝑧) ∈ On → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
119, 10mp1i 13 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
12 alephord2 10145 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
13 alephord 10144 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1411, 12, 133bitr2d 307 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1514bibi2d 342 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1615ralbidva 3182 . . . . 5 (𝑦 ∈ On → (∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1716ralbiia 3097 . . . 4 (∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
188, 17anbi12i 627 . . 3 ((ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
19 df-isom 6582 . . 3 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))))
20 df-isom 6582 . . 3 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
2118, 19, 203bitr4i 303 . 2 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
221, 21mpbi 230 1 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  wss 3976   class class class wbr 5166   E cep 5598  ran crn 5701  Oncon0 6395  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574  ωcom 7903  csdm 9002  cardccrd 10004  cale 10005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-card 10008  df-aleph 10009
This theorem is referenced by:  alephiso3  43521
  Copyright terms: Public domain W3C validator