Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso2 Structured version   Visualization version   GIF version

Theorem alephiso2 39779
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})

Proof of Theorem alephiso2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso 9516 . 2 ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})
2 iscard4 39762 . . . . . . . 8 ((card‘𝑥) = 𝑥𝑥 ∈ ran card)
32anbi1ci 625 . . . . . . 7 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥))
43abbii 2890 . . . . . 6 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
5 df-rab 3151 . . . . . 6 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
64, 5eqtr4i 2851 . . . . 5 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}
7 f1oeq3 6602 . . . . 5 ({𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} → (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
86, 7ax-mp 5 . . . 4 (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
9 alephon 9487 . . . . . . . . 9 (ℵ‘𝑧) ∈ On
10 epelg 5464 . . . . . . . . 9 ((ℵ‘𝑧) ∈ On → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
119, 10mp1i 13 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
12 alephord2 9494 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
13 alephord 9493 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1411, 12, 133bitr2d 308 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1514bibi2d 344 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1615ralbidva 3200 . . . . 5 (𝑦 ∈ On → (∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1716ralbiia 3168 . . . 4 (∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
188, 17anbi12i 626 . . 3 ((ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
19 df-isom 6360 . . 3 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))))
20 df-isom 6360 . . 3 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
2118, 19, 203bitr4i 304 . 2 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
221, 21mpbi 231 1 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2106  {cab 2802  wral 3142  {crab 3146  wss 3939   class class class wbr 5062   E cep 5462  ran crn 5554  Oncon0 6188  1-1-ontowf1o 6350  cfv 6351   Isom wiso 6352  ωcom 7571  csdm 8500  cardccrd 9356  cale 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-oi 8966  df-har 9014  df-card 9360  df-aleph 9361
This theorem is referenced by:  alephiso3  39780
  Copyright terms: Public domain W3C validator