Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso2 Structured version   Visualization version   GIF version

Theorem alephiso2 43557
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})

Proof of Theorem alephiso2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso 10117 . 2 ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})
2 iscard4 43532 . . . . . . . 8 ((card‘𝑥) = 𝑥𝑥 ∈ ran card)
32anbi1ci 626 . . . . . . 7 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥))
43abbii 2803 . . . . . 6 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
5 df-rab 3421 . . . . . 6 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ ω ⊆ 𝑥)}
64, 5eqtr4i 2762 . . . . 5 {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}
7 f1oeq3 6813 . . . . 5 ({𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} = {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} → (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
86, 7ax-mp 5 . . . 4 (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
9 alephon 10088 . . . . . . . . 9 (ℵ‘𝑧) ∈ On
10 epelg 5559 . . . . . . . . 9 ((ℵ‘𝑧) ∈ On → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
119, 10mp1i 13 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
12 alephord2 10095 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
13 alephord 10094 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1411, 12, 133bitr2d 307 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
1514bibi2d 342 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1615ralbidva 3162 . . . . 5 (𝑦 ∈ On → (∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
1716ralbiia 3081 . . . 4 (∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧)))
188, 17anbi12i 628 . . 3 ((ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
19 df-isom 6545 . . 3 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))))
20 df-isom 6545 . . 3 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ (ℵ:On–1-1-onto→{𝑥 ∈ ran card ∣ ω ⊆ 𝑥} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝑧))))
2118, 19, 203bitr4i 303 . 2 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}))
221, 21mpbi 230 1 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  {crab 3420  wss 3931   class class class wbr 5124   E cep 5557  ran crn 5660  Oncon0 6357  1-1-ontowf1o 6535  cfv 6536   Isom wiso 6537  ωcom 7866  csdm 8963  cardccrd 9954  cale 9955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-har 9576  df-card 9958  df-aleph 9959
This theorem is referenced by:  alephiso3  43558
  Copyright terms: Public domain W3C validator