Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sscoid Structured version   Visualization version   GIF version

Theorem sscoid 33369
Description: A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
sscoid (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴𝐴𝐵))

Proof of Theorem sscoid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6091 . . 3 Rel ( I ∘ 𝐵)
2 relss 5650 . . 3 (𝐴 ⊆ ( I ∘ 𝐵) → (Rel ( I ∘ 𝐵) → Rel 𝐴))
31, 2mpi 20 . 2 (𝐴 ⊆ ( I ∘ 𝐵) → Rel 𝐴)
4 elrel 5665 . . . . . 6 ((Rel 𝐴𝑥𝐴) → ∃𝑦𝑧 𝑥 = ⟨𝑦, 𝑧⟩)
5 vex 3497 . . . . . . . . . . 11 𝑦 ∈ V
6 vex 3497 . . . . . . . . . . 11 𝑧 ∈ V
75, 6brco 5735 . . . . . . . . . 10 (𝑦( I ∘ 𝐵)𝑧 ↔ ∃𝑥(𝑦𝐵𝑥𝑥 I 𝑧))
86ideq 5717 . . . . . . . . . . . 12 (𝑥 I 𝑧𝑥 = 𝑧)
98anbi1ci 627 . . . . . . . . . . 11 ((𝑦𝐵𝑥𝑥 I 𝑧) ↔ (𝑥 = 𝑧𝑦𝐵𝑥))
109exbii 1844 . . . . . . . . . 10 (∃𝑥(𝑦𝐵𝑥𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑧𝑦𝐵𝑥))
11 breq2 5062 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑦𝐵𝑥𝑦𝐵𝑧))
1211equsexvw 2007 . . . . . . . . . 10 (∃𝑥(𝑥 = 𝑧𝑦𝐵𝑥) ↔ 𝑦𝐵𝑧)
137, 10, 123bitri 299 . . . . . . . . 9 (𝑦( I ∘ 𝐵)𝑧𝑦𝐵𝑧)
1413a1i 11 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑦( I ∘ 𝐵)𝑧𝑦𝐵𝑧))
15 eleq1 2900 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ ( I ∘ 𝐵)))
16 df-br 5059 . . . . . . . . 9 (𝑦( I ∘ 𝐵)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ( I ∘ 𝐵))
1715, 16syl6bbr 291 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑦( I ∘ 𝐵)𝑧))
18 eleq1 2900 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵))
19 df-br 5059 . . . . . . . . 9 (𝑦𝐵𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵)
2018, 19syl6bbr 291 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐵𝑦𝐵𝑧))
2114, 17, 203bitr4d 313 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥𝐵))
2221exlimivv 1929 . . . . . 6 (∃𝑦𝑧 𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥𝐵))
234, 22syl 17 . . . . 5 ((Rel 𝐴𝑥𝐴) → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥𝐵))
2423pm5.74da 802 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝑥 ∈ ( I ∘ 𝐵)) ↔ (𝑥𝐴𝑥𝐵)))
2524albidv 1917 . . 3 (Rel 𝐴 → (∀𝑥(𝑥𝐴𝑥 ∈ ( I ∘ 𝐵)) ↔ ∀𝑥(𝑥𝐴𝑥𝐵)))
26 dfss2 3954 . . 3 (𝐴 ⊆ ( I ∘ 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ( I ∘ 𝐵)))
27 dfss2 3954 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2825, 26, 273bitr4g 316 . 2 (Rel 𝐴 → (𝐴 ⊆ ( I ∘ 𝐵) ↔ 𝐴𝐵))
293, 28biadanii 820 1 (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  wss 3935  cop 4566   class class class wbr 5058   I cid 5453  ccom 5553  Rel wrel 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-co 5558
This theorem is referenced by:  dffun10  33370
  Copyright terms: Public domain W3C validator