Step | Hyp | Ref
| Expression |
1 | | relco 6137 |
. . 3
⊢ Rel ( I
∘ 𝐵) |
2 | | relss 5682 |
. . 3
⊢ (𝐴 ⊆ ( I ∘ 𝐵) → (Rel ( I ∘ 𝐵) → Rel 𝐴)) |
3 | 1, 2 | mpi 20 |
. 2
⊢ (𝐴 ⊆ ( I ∘ 𝐵) → Rel 𝐴) |
4 | | elrel 5697 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑦∃𝑧 𝑥 = 〈𝑦, 𝑧〉) |
5 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
6 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
7 | 5, 6 | brco 5768 |
. . . . . . . . . 10
⊢ (𝑦( I ∘ 𝐵)𝑧 ↔ ∃𝑥(𝑦𝐵𝑥 ∧ 𝑥 I 𝑧)) |
8 | 6 | ideq 5750 |
. . . . . . . . . . . 12
⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
9 | 8 | anbi1ci 625 |
. . . . . . . . . . 11
⊢ ((𝑦𝐵𝑥 ∧ 𝑥 I 𝑧) ↔ (𝑥 = 𝑧 ∧ 𝑦𝐵𝑥)) |
10 | 9 | exbii 1851 |
. . . . . . . . . 10
⊢
(∃𝑥(𝑦𝐵𝑥 ∧ 𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑧 ∧ 𝑦𝐵𝑥)) |
11 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑦𝐵𝑥 ↔ 𝑦𝐵𝑧)) |
12 | 11 | equsexvw 2009 |
. . . . . . . . . 10
⊢
(∃𝑥(𝑥 = 𝑧 ∧ 𝑦𝐵𝑥) ↔ 𝑦𝐵𝑧) |
13 | 7, 10, 12 | 3bitri 296 |
. . . . . . . . 9
⊢ (𝑦( I ∘ 𝐵)𝑧 ↔ 𝑦𝐵𝑧) |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑦( I ∘ 𝐵)𝑧 ↔ 𝑦𝐵𝑧)) |
15 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ ( I ∘ 𝐵) ↔ 〈𝑦, 𝑧〉 ∈ ( I ∘ 𝐵))) |
16 | | df-br 5071 |
. . . . . . . . 9
⊢ (𝑦( I ∘ 𝐵)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ( I ∘ 𝐵)) |
17 | 15, 16 | bitr4di 288 |
. . . . . . . 8
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑦( I ∘ 𝐵)𝑧)) |
18 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ 𝐵)) |
19 | | df-br 5071 |
. . . . . . . . 9
⊢ (𝑦𝐵𝑧 ↔ 〈𝑦, 𝑧〉 ∈ 𝐵) |
20 | 18, 19 | bitr4di 288 |
. . . . . . . 8
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ 𝐵 ↔ 𝑦𝐵𝑧)) |
21 | 14, 17, 20 | 3bitr4d 310 |
. . . . . . 7
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
22 | 21 | exlimivv 1936 |
. . . . . 6
⊢
(∃𝑦∃𝑧 𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
23 | 4, 22 | syl 17 |
. . . . 5
⊢ ((Rel
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
24 | 23 | pm5.74da 800 |
. . . 4
⊢ (Rel
𝐴 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵)) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
25 | 24 | albidv 1924 |
. . 3
⊢ (Rel
𝐴 → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
26 | | dfss2 3903 |
. . 3
⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵))) |
27 | | dfss2 3903 |
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
28 | 25, 26, 27 | 3bitr4g 313 |
. 2
⊢ (Rel
𝐴 → (𝐴 ⊆ ( I ∘ 𝐵) ↔ 𝐴 ⊆ 𝐵)) |
29 | 3, 28 | biadanii 818 |
1
⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) |