Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sscoid Structured version   Visualization version   GIF version

Theorem sscoid 33798
Description: A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
sscoid (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴𝐴𝐵))

Proof of Theorem sscoid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6079 . . 3 Rel ( I ∘ 𝐵)
2 relss 5630 . . 3 (𝐴 ⊆ ( I ∘ 𝐵) → (Rel ( I ∘ 𝐵) → Rel 𝐴))
31, 2mpi 20 . 2 (𝐴 ⊆ ( I ∘ 𝐵) → Rel 𝐴)
4 elrel 5645 . . . . . 6 ((Rel 𝐴𝑥𝐴) → ∃𝑦𝑧 𝑥 = ⟨𝑦, 𝑧⟩)
5 vex 3413 . . . . . . . . . . 11 𝑦 ∈ V
6 vex 3413 . . . . . . . . . . 11 𝑧 ∈ V
75, 6brco 5716 . . . . . . . . . 10 (𝑦( I ∘ 𝐵)𝑧 ↔ ∃𝑥(𝑦𝐵𝑥𝑥 I 𝑧))
86ideq 5698 . . . . . . . . . . . 12 (𝑥 I 𝑧𝑥 = 𝑧)
98anbi1ci 628 . . . . . . . . . . 11 ((𝑦𝐵𝑥𝑥 I 𝑧) ↔ (𝑥 = 𝑧𝑦𝐵𝑥))
109exbii 1849 . . . . . . . . . 10 (∃𝑥(𝑦𝐵𝑥𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑧𝑦𝐵𝑥))
11 breq2 5040 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑦𝐵𝑥𝑦𝐵𝑧))
1211equsexvw 2011 . . . . . . . . . 10 (∃𝑥(𝑥 = 𝑧𝑦𝐵𝑥) ↔ 𝑦𝐵𝑧)
137, 10, 123bitri 300 . . . . . . . . 9 (𝑦( I ∘ 𝐵)𝑧𝑦𝐵𝑧)
1413a1i 11 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑦( I ∘ 𝐵)𝑧𝑦𝐵𝑧))
15 eleq1 2839 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ ( I ∘ 𝐵)))
16 df-br 5037 . . . . . . . . 9 (𝑦( I ∘ 𝐵)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ( I ∘ 𝐵))
1715, 16bitr4di 292 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑦( I ∘ 𝐵)𝑧))
18 eleq1 2839 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵))
19 df-br 5037 . . . . . . . . 9 (𝑦𝐵𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵)
2018, 19bitr4di 292 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐵𝑦𝐵𝑧))
2114, 17, 203bitr4d 314 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥𝐵))
2221exlimivv 1933 . . . . . 6 (∃𝑦𝑧 𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥𝐵))
234, 22syl 17 . . . . 5 ((Rel 𝐴𝑥𝐴) → (𝑥 ∈ ( I ∘ 𝐵) ↔ 𝑥𝐵))
2423pm5.74da 803 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝑥 ∈ ( I ∘ 𝐵)) ↔ (𝑥𝐴𝑥𝐵)))
2524albidv 1921 . . 3 (Rel 𝐴 → (∀𝑥(𝑥𝐴𝑥 ∈ ( I ∘ 𝐵)) ↔ ∀𝑥(𝑥𝐴𝑥𝐵)))
26 dfss2 3880 . . 3 (𝐴 ⊆ ( I ∘ 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ( I ∘ 𝐵)))
27 dfss2 3880 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2825, 26, 273bitr4g 317 . 2 (Rel 𝐴 → (𝐴 ⊆ ( I ∘ 𝐵) ↔ 𝐴𝐵))
293, 28biadanii 821 1 (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  wss 3860  cop 4531   class class class wbr 5036   I cid 5433  ccom 5532  Rel wrel 5533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-co 5537
This theorem is referenced by:  dffun10  33799
  Copyright terms: Public domain W3C validator