MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imai Structured version   Visualization version   GIF version

Theorem imai 6072
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai ( I “ 𝐴) = 𝐴

Proof of Theorem imai
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 6061 . 2 ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )}
2 df-br 5124 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
3 vex 3467 . . . . . . . 8 𝑦 ∈ V
43ideq 5843 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
52, 4bitr3i 277 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
65anbi1ci 626 . . . . 5 ((𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 = 𝑦𝑥𝐴))
76exbii 1847 . . . 4 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝐴))
8 eleq1w 2816 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98equsexvw 2003 . . . 4 (∃𝑥(𝑥 = 𝑦𝑥𝐴) ↔ 𝑦𝐴)
107, 9bitri 275 . . 3 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ 𝑦𝐴)
1110abbii 2801 . 2 {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )} = {𝑦𝑦𝐴}
12 abid2 2871 . 2 {𝑦𝑦𝐴} = 𝐴
131, 11, 123eqtri 2761 1 ( I “ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2712  cop 4612   class class class wbr 5123   I cid 5557  cima 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678
This theorem is referenced by:  rnresi  6073  cnvresid  6624  ecidsn  8781  eqg0subgecsn  19183  mbfid  25605  frege131d  43715  frege110  43924  frege133  43947
  Copyright terms: Public domain W3C validator