| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imai | Structured version Visualization version GIF version | ||
| Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| imai | ⊢ ( I “ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 6061 | . 2 ⊢ ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} | |
| 2 | df-br 5124 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 3 | vex 3467 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq 5843 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 5 | 2, 4 | bitr3i 277 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
| 6 | 5 | anbi1ci 626 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 7 | 6 | exbii 1847 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 8 | eleq1w 2816 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 9 | 8 | equsexvw 2003 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
| 10 | 7, 9 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ 𝑦 ∈ 𝐴) |
| 11 | 10 | abbii 2801 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 12 | abid2 2871 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 13 | 1, 11, 12 | 3eqtri 2761 | 1 ⊢ ( I “ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 〈cop 4612 class class class wbr 5123 I cid 5557 “ cima 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 |
| This theorem is referenced by: rnresi 6073 cnvresid 6624 ecidsn 8781 eqg0subgecsn 19183 mbfid 25605 frege131d 43715 frege110 43924 frege133 43947 |
| Copyright terms: Public domain | W3C validator |