MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imai Structured version   Visualization version   GIF version

Theorem imai 6073
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai ( I “ 𝐴) = 𝐴

Proof of Theorem imai
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 6062 . 2 ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )}
2 df-br 5149 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
3 vex 3477 . . . . . . . 8 𝑦 ∈ V
43ideq 5852 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
52, 4bitr3i 277 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
65anbi1ci 625 . . . . 5 ((𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 = 𝑦𝑥𝐴))
76exbii 1849 . . . 4 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝐴))
8 eleq1w 2815 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98equsexvw 2007 . . . 4 (∃𝑥(𝑥 = 𝑦𝑥𝐴) ↔ 𝑦𝐴)
107, 9bitri 275 . . 3 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ 𝑦𝐴)
1110abbii 2801 . 2 {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )} = {𝑦𝑦𝐴}
12 abid2 2870 . 2 {𝑦𝑦𝐴} = 𝐴
131, 11, 123eqtri 2763 1 ( I “ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1780  wcel 2105  {cab 2708  cop 4634   class class class wbr 5148   I cid 5573  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  rnresi  6074  cnvresid  6627  ecidsn  8762  eqg0subgecsn  19116  mbfid  25397  frege131d  42830  frege110  43039  frege133  43062
  Copyright terms: Public domain W3C validator