| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imai | Structured version Visualization version GIF version | ||
| Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| imai | ⊢ ( I “ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 6018 | . 2 ⊢ ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} | |
| 2 | df-br 5096 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 3 | vex 3441 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq 5798 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 5 | 2, 4 | bitr3i 277 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
| 6 | 5 | anbi1ci 626 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 7 | 6 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 8 | eleq1w 2816 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 9 | 8 | equsexvw 2006 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
| 10 | 7, 9 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ 𝑦 ∈ 𝐴) |
| 11 | 10 | abbii 2800 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 12 | abid2 2870 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 13 | 1, 11, 12 | 3eqtri 2760 | 1 ⊢ ( I “ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 〈cop 4583 class class class wbr 5095 I cid 5515 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: rnresi 6030 cnvresid 6567 ecidsn 8688 eqg0subgecsn 19113 mbfid 25566 frege131d 43884 frege110 44093 frege133 44116 |
| Copyright terms: Public domain | W3C validator |