![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imai | Structured version Visualization version GIF version |
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
imai | ⊢ ( I “ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima3 6062 | . 2 ⊢ ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )} | |
2 | df-br 5149 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I ) | |
3 | vex 3477 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 5852 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | 2, 4 | bitr3i 277 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦) |
6 | 5 | anbi1ci 625 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
7 | 6 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
8 | eleq1w 2815 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
9 | 8 | equsexvw 2007 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
10 | 7, 9 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ 𝑦 ∈ 𝐴) |
11 | 10 | abbii 2801 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
12 | abid2 2870 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
13 | 1, 11, 12 | 3eqtri 2763 | 1 ⊢ ( I “ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ⟨cop 4634 class class class wbr 5148 I cid 5573 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: rnresi 6074 cnvresid 6627 ecidsn 8762 eqg0subgecsn 19116 mbfid 25397 frege131d 42830 frege110 43039 frege133 43062 |
Copyright terms: Public domain | W3C validator |