Proof of Theorem frpoind
| Step | Hyp | Ref
| Expression |
| 1 | | ssdif0 4366 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| 2 | 1 | necon3bbii 2988 |
. . . . . 6
⊢ (¬
𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
| 3 | | difss 4136 |
. . . . . . 7
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| 4 | | frpomin2 6362 |
. . . . . . . . 9
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∖ 𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴 ∖ 𝐵)Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) |
| 5 | | eldif 3961 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
| 6 | 5 | anbi1i 624 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (𝐴 ∖ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅)) |
| 7 | | anass 468 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (𝑦 ∈ 𝐴 ∧ (¬ 𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅))) |
| 8 | | indif2 4281 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑅 “ {𝑦}) ∩ (𝐴 ∖ 𝐵)) = (((◡𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵) |
| 9 | | df-pred 6321 |
. . . . . . . . . . . . . . . . . 18
⊢
Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑦})) |
| 10 | | incom 4209 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑦})) = ((◡𝑅 “ {𝑦}) ∩ (𝐴 ∖ 𝐵)) |
| 11 | 9, 10 | eqtri 2765 |
. . . . . . . . . . . . . . . . 17
⊢
Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ((◡𝑅 “ {𝑦}) ∩ (𝐴 ∖ 𝐵)) |
| 12 | | df-pred 6321 |
. . . . . . . . . . . . . . . . . . 19
⊢
Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (◡𝑅 “ {𝑦})) |
| 13 | | incom 4209 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∩ (◡𝑅 “ {𝑦})) = ((◡𝑅 “ {𝑦}) ∩ 𝐴) |
| 14 | 12, 13 | eqtri 2765 |
. . . . . . . . . . . . . . . . . 18
⊢
Pred(𝑅, 𝐴, 𝑦) = ((◡𝑅 “ {𝑦}) ∩ 𝐴) |
| 15 | 14 | difeq1i 4122 |
. . . . . . . . . . . . . . . . 17
⊢
(Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((◡𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵) |
| 16 | 8, 11, 15 | 3eqtr4i 2775 |
. . . . . . . . . . . . . . . 16
⊢
Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) |
| 17 | 16 | eqeq1i 2742 |
. . . . . . . . . . . . . . 15
⊢
(Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅) |
| 18 | | ssdif0 4366 |
. . . . . . . . . . . . . . 15
⊢
(Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅) |
| 19 | 17, 18 | bitr4i 278 |
. . . . . . . . . . . . . 14
⊢
(Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
| 20 | 19 | anbi1ci 626 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵)) |
| 21 | 20 | anbi2i 623 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅)) ↔ (𝑦 ∈ 𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵))) |
| 22 | 6, 7, 21 | 3bitri 297 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐴 ∖ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (𝑦 ∈ 𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵))) |
| 23 | 22 | rexbii2 3090 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
(𝐴 ∖ 𝐵)Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵)) |
| 24 | | rexanali 3102 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵) ↔ ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) |
| 25 | 23, 24 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(𝐴 ∖ 𝐵)Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) |
| 26 | 4, 25 | sylib 218 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∖ 𝐵) ≠ ∅)) → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) |
| 27 | 26 | ex 412 |
. . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) |
| 28 | 3, 27 | mpani 696 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ((𝐴 ∖ 𝐵) ≠ ∅ → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) |
| 29 | 2, 28 | biimtrid 242 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → (¬ 𝐴 ⊆ 𝐵 → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) |
| 30 | 29 | con4d 115 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → (∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵) → 𝐴 ⊆ 𝐵)) |
| 31 | 30 | imp 406 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 32 | 31 | adantrl 716 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 ⊆ 𝐵) |
| 33 | | simprl 771 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐵 ⊆ 𝐴) |
| 34 | 32, 33 | eqssd 4001 |
1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) |