Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frpoind Structured version   Visualization version   GIF version

Theorem frpoind 33331
 Description: The principle of founded induction over a partial ordering. This theorem is a version of frind 33339 that does not require infinity, and can be used to prove wfi 6163 and tfi 7572. (Contributed by Scott Fenton, 11-Feb-2022.)
Assertion
Ref Expression
frpoind (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem frpoind
StepHypRef Expression
1 ssdif0 4264 . . . . . . 7 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2998 . . . . . 6 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 difss 4039 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
4 frpomin2 33330 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)
5 eldif 3870 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
65anbi1i 626 . . . . . . . . . . . 12 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ ((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅))
7 anass 472 . . . . . . . . . . . 12 (((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)))
8 indif2 4177 . . . . . . . . . . . . . . . . 17 ((𝑅 “ {𝑦}) ∩ (𝐴𝐵)) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
9 df-pred 6130 . . . . . . . . . . . . . . . . . 18 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝐴𝐵) ∩ (𝑅 “ {𝑦}))
10 incom 4108 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵) ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
119, 10eqtri 2781 . . . . . . . . . . . . . . . . 17 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
12 df-pred 6130 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (𝑅 “ {𝑦}))
13 incom 4108 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1412, 13eqtri 2781 . . . . . . . . . . . . . . . . . 18 Pred(𝑅, 𝐴, 𝑦) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1514difeq1i 4026 . . . . . . . . . . . . . . . . 17 (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
168, 11, 153eqtr4i 2791 . . . . . . . . . . . . . . . 16 Pred(𝑅, (𝐴𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵)
1716eqeq1i 2763 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
18 ssdif0 4264 . . . . . . . . . . . . . . 15 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
1917, 18bitr4i 281 . . . . . . . . . . . . . 14 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
2019anbi1ci 628 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
2120anbi2i 625 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
226, 7, 213bitri 300 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
2322rexbii2 3173 . . . . . . . . . 10 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
24 rexanali 3189 . . . . . . . . . 10 (∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2523, 24bitri 278 . . . . . . . . 9 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
264, 25sylib 221 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2726ex 416 . . . . . . 7 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
283, 27mpani 695 . . . . . 6 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ((𝐴𝐵) ≠ ∅ → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
292, 28syl5bi 245 . . . . 5 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (¬ 𝐴𝐵 → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
3029con4d 115 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵) → 𝐴𝐵))
3130imp 410 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴𝐵)
3231adantrl 715 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴𝐵)
33 simprl 770 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐵𝐴)
3432, 33eqssd 3911 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071   ∖ cdif 3857   ∩ cin 3859   ⊆ wss 3860  ∅c0 4227  {csn 4525   Po wpo 5444   Fr wfr 5483   Se wse 5484  ◡ccnv 5526   “ cima 5530  Predcpred 6129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5036  df-opab 5098  df-po 5446  df-fr 5486  df-se 5487  df-xp 5533  df-cnv 5535  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130 This theorem is referenced by:  frpoinsg  33332
 Copyright terms: Public domain W3C validator