![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cf0 | Structured version Visualization version GIF version |
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
cf0 | ⊢ (cf‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfub 10287 | . . 3 ⊢ (cf‘∅) ⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} | |
2 | 0ss 4406 | . . . . . . . . . . . 12 ⊢ ∅ ⊆ ∪ 𝑦 | |
3 | 2 | biantru 529 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) |
4 | ss0b 4407 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) | |
5 | 3, 4 | bitr3i 277 | . . . . . . . . . 10 ⊢ ((𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦) ↔ 𝑦 = ∅) |
6 | 5 | anbi1ci 626 | . . . . . . . . 9 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
7 | 6 | exbii 1845 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
8 | 0ex 5313 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
9 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (card‘𝑦) = (card‘∅)) | |
10 | 9 | eqeq2d 2746 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅))) |
11 | 8, 10 | ceqsexv 3530 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅)) |
12 | card0 9996 | . . . . . . . . 9 ⊢ (card‘∅) = ∅ | |
13 | 12 | eqeq2i 2748 | . . . . . . . 8 ⊢ (𝑥 = (card‘∅) ↔ 𝑥 = ∅) |
14 | 7, 11, 13 | 3bitri 297 | . . . . . . 7 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ 𝑥 = ∅) |
15 | 14 | abbii 2807 | . . . . . 6 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {𝑥 ∣ 𝑥 = ∅} |
16 | df-sn 4632 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
17 | 15, 16 | eqtr4i 2766 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {∅} |
18 | 17 | inteqi 4955 | . . . 4 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∩ {∅} |
19 | 8 | intsn 4989 | . . . 4 ⊢ ∩ {∅} = ∅ |
20 | 18, 19 | eqtri 2763 | . . 3 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∅ |
21 | 1, 20 | sseqtri 4032 | . 2 ⊢ (cf‘∅) ⊆ ∅ |
22 | ss0b 4407 | . 2 ⊢ ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅) | |
23 | 21, 22 | mpbi 230 | 1 ⊢ (cf‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 {cab 2712 ⊆ wss 3963 ∅c0 4339 {csn 4631 ∪ cuni 4912 ∩ cint 4951 ‘cfv 6563 cardccrd 9973 cfccf 9975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-en 8985 df-card 9977 df-cf 9979 |
This theorem is referenced by: cfeq0 10294 cflim2 10301 cfidm 10313 alephsing 10314 alephreg 10620 pwcfsdom 10621 rankcf 10815 |
Copyright terms: Public domain | W3C validator |