| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cf0 | Structured version Visualization version GIF version | ||
| Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| cf0 | ⊢ (cf‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfub 10137 | . . 3 ⊢ (cf‘∅) ⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} | |
| 2 | 0ss 4350 | . . . . . . . . . . . 12 ⊢ ∅ ⊆ ∪ 𝑦 | |
| 3 | 2 | biantru 529 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) |
| 4 | ss0b 4351 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) | |
| 5 | 3, 4 | bitr3i 277 | . . . . . . . . . 10 ⊢ ((𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦) ↔ 𝑦 = ∅) |
| 6 | 5 | anbi1ci 626 | . . . . . . . . 9 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
| 7 | 6 | exbii 1849 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
| 8 | 0ex 5245 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 9 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (card‘𝑦) = (card‘∅)) | |
| 10 | 9 | eqeq2d 2742 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅))) |
| 11 | 8, 10 | ceqsexv 3487 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅)) |
| 12 | card0 9848 | . . . . . . . . 9 ⊢ (card‘∅) = ∅ | |
| 13 | 12 | eqeq2i 2744 | . . . . . . . 8 ⊢ (𝑥 = (card‘∅) ↔ 𝑥 = ∅) |
| 14 | 7, 11, 13 | 3bitri 297 | . . . . . . 7 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ 𝑥 = ∅) |
| 15 | 14 | abbii 2798 | . . . . . 6 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {𝑥 ∣ 𝑥 = ∅} |
| 16 | df-sn 4577 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 17 | 15, 16 | eqtr4i 2757 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {∅} |
| 18 | 17 | inteqi 4901 | . . . 4 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∩ {∅} |
| 19 | 8 | intsn 4934 | . . . 4 ⊢ ∩ {∅} = ∅ |
| 20 | 18, 19 | eqtri 2754 | . . 3 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∅ |
| 21 | 1, 20 | sseqtri 3983 | . 2 ⊢ (cf‘∅) ⊆ ∅ |
| 22 | ss0b 4351 | . 2 ⊢ ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅) | |
| 23 | 21, 22 | mpbi 230 | 1 ⊢ (cf‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 ⊆ wss 3902 ∅c0 4283 {csn 4576 ∪ cuni 4859 ∩ cint 4897 ‘cfv 6481 cardccrd 9825 cfccf 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-en 8870 df-card 9829 df-cf 9831 |
| This theorem is referenced by: cfeq0 10144 cflim2 10151 cfidm 10163 alephsing 10164 alephreg 10470 pwcfsdom 10471 rankcf 10665 |
| Copyright terms: Public domain | W3C validator |