| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cf0 | Structured version Visualization version GIF version | ||
| Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| cf0 | ⊢ (cf‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfub 10209 | . . 3 ⊢ (cf‘∅) ⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} | |
| 2 | 0ss 4366 | . . . . . . . . . . . 12 ⊢ ∅ ⊆ ∪ 𝑦 | |
| 3 | 2 | biantru 529 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) |
| 4 | ss0b 4367 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) | |
| 5 | 3, 4 | bitr3i 277 | . . . . . . . . . 10 ⊢ ((𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦) ↔ 𝑦 = ∅) |
| 6 | 5 | anbi1ci 626 | . . . . . . . . 9 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
| 7 | 6 | exbii 1848 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
| 8 | 0ex 5265 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 9 | fveq2 6861 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (card‘𝑦) = (card‘∅)) | |
| 10 | 9 | eqeq2d 2741 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅))) |
| 11 | 8, 10 | ceqsexv 3501 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅)) |
| 12 | card0 9918 | . . . . . . . . 9 ⊢ (card‘∅) = ∅ | |
| 13 | 12 | eqeq2i 2743 | . . . . . . . 8 ⊢ (𝑥 = (card‘∅) ↔ 𝑥 = ∅) |
| 14 | 7, 11, 13 | 3bitri 297 | . . . . . . 7 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ 𝑥 = ∅) |
| 15 | 14 | abbii 2797 | . . . . . 6 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {𝑥 ∣ 𝑥 = ∅} |
| 16 | df-sn 4593 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 17 | 15, 16 | eqtr4i 2756 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {∅} |
| 18 | 17 | inteqi 4917 | . . . 4 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∩ {∅} |
| 19 | 8 | intsn 4951 | . . . 4 ⊢ ∩ {∅} = ∅ |
| 20 | 18, 19 | eqtri 2753 | . . 3 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∅ |
| 21 | 1, 20 | sseqtri 3998 | . 2 ⊢ (cf‘∅) ⊆ ∅ |
| 22 | ss0b 4367 | . 2 ⊢ ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅) | |
| 23 | 21, 22 | mpbi 230 | 1 ⊢ (cf‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2708 ⊆ wss 3917 ∅c0 4299 {csn 4592 ∪ cuni 4874 ∩ cint 4913 ‘cfv 6514 cardccrd 9895 cfccf 9897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 df-card 9899 df-cf 9901 |
| This theorem is referenced by: cfeq0 10216 cflim2 10223 cfidm 10235 alephsing 10236 alephreg 10542 pwcfsdom 10543 rankcf 10737 |
| Copyright terms: Public domain | W3C validator |