Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cf0 | Structured version Visualization version GIF version |
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
cf0 | ⊢ (cf‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfub 9936 | . . 3 ⊢ (cf‘∅) ⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} | |
2 | 0ss 4327 | . . . . . . . . . . . 12 ⊢ ∅ ⊆ ∪ 𝑦 | |
3 | 2 | biantru 529 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) |
4 | ss0b 4328 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) | |
5 | 3, 4 | bitr3i 276 | . . . . . . . . . 10 ⊢ ((𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦) ↔ 𝑦 = ∅) |
6 | 5 | anbi1ci 625 | . . . . . . . . 9 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
7 | 6 | exbii 1851 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
8 | 0ex 5226 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
9 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (card‘𝑦) = (card‘∅)) | |
10 | 9 | eqeq2d 2749 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅))) |
11 | 8, 10 | ceqsexv 3469 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅)) |
12 | card0 9647 | . . . . . . . . 9 ⊢ (card‘∅) = ∅ | |
13 | 12 | eqeq2i 2751 | . . . . . . . 8 ⊢ (𝑥 = (card‘∅) ↔ 𝑥 = ∅) |
14 | 7, 11, 13 | 3bitri 296 | . . . . . . 7 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ 𝑥 = ∅) |
15 | 14 | abbii 2809 | . . . . . 6 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {𝑥 ∣ 𝑥 = ∅} |
16 | df-sn 4559 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
17 | 15, 16 | eqtr4i 2769 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {∅} |
18 | 17 | inteqi 4880 | . . . 4 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∩ {∅} |
19 | 8 | intsn 4914 | . . . 4 ⊢ ∩ {∅} = ∅ |
20 | 18, 19 | eqtri 2766 | . . 3 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∅ |
21 | 1, 20 | sseqtri 3953 | . 2 ⊢ (cf‘∅) ⊆ ∅ |
22 | ss0b 4328 | . 2 ⊢ ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅) | |
23 | 21, 22 | mpbi 229 | 1 ⊢ (cf‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 {cab 2715 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 ∩ cint 4876 ‘cfv 6418 cardccrd 9624 cfccf 9626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-en 8692 df-card 9628 df-cf 9630 |
This theorem is referenced by: cfeq0 9943 cflim2 9950 cfidm 9962 alephsing 9963 alephreg 10269 pwcfsdom 10270 rankcf 10464 |
Copyright terms: Public domain | W3C validator |