Step | Hyp | Ref
| Expression |
1 | | cfub 10246 |
. . 3
β’
(cfββ
) β β© {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))} |
2 | | 0ss 4395 |
. . . . . . . . . . . 12
β’ β
β βͺ π¦ |
3 | 2 | biantru 528 |
. . . . . . . . . . 11
β’ (π¦ β β
β (π¦ β β
β§ β
β βͺ π¦)) |
4 | | ss0b 4396 |
. . . . . . . . . . 11
β’ (π¦ β β
β π¦ = β
) |
5 | 3, 4 | bitr3i 276 |
. . . . . . . . . 10
β’ ((π¦ β β
β§ β
β βͺ π¦) β π¦ = β
) |
6 | 5 | anbi1ci 624 |
. . . . . . . . 9
β’ ((π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))
β (π¦ = β
β§
π₯ = (cardβπ¦))) |
7 | 6 | exbii 1848 |
. . . . . . . 8
β’
(βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))
β βπ¦(π¦ = β
β§ π₯ = (cardβπ¦))) |
8 | | 0ex 5306 |
. . . . . . . . 9
β’ β
β V |
9 | | fveq2 6890 |
. . . . . . . . . 10
β’ (π¦ = β
β
(cardβπ¦) =
(cardββ
)) |
10 | 9 | eqeq2d 2741 |
. . . . . . . . 9
β’ (π¦ = β
β (π₯ = (cardβπ¦) β π₯ = (cardββ
))) |
11 | 8, 10 | ceqsexv 3524 |
. . . . . . . 8
β’
(βπ¦(π¦ = β
β§ π₯ = (cardβπ¦)) β π₯ = (cardββ
)) |
12 | | card0 9955 |
. . . . . . . . 9
β’
(cardββ
) = β
|
13 | 12 | eqeq2i 2743 |
. . . . . . . 8
β’ (π₯ = (cardββ
) β
π₯ =
β
) |
14 | 7, 11, 13 | 3bitri 296 |
. . . . . . 7
β’
(βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))
β π₯ =
β
) |
15 | 14 | abbii 2800 |
. . . . . 6
β’ {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))}
= {π₯ β£ π₯ = β
} |
16 | | df-sn 4628 |
. . . . . 6
β’ {β
}
= {π₯ β£ π₯ = β
} |
17 | 15, 16 | eqtr4i 2761 |
. . . . 5
β’ {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))}
= {β
} |
18 | 17 | inteqi 4953 |
. . . 4
β’ β© {π₯
β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))}
= β© {β
} |
19 | 8 | intsn 4989 |
. . . 4
β’ β© {β
} = β
|
20 | 18, 19 | eqtri 2758 |
. . 3
β’ β© {π₯
β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β β
β§ β
β βͺ π¦))}
= β
|
21 | 1, 20 | sseqtri 4017 |
. 2
β’
(cfββ
) β β
|
22 | | ss0b 4396 |
. 2
β’
((cfββ
) β β
β (cfββ
) =
β
) |
23 | 21, 22 | mpbi 229 |
1
β’
(cfββ
) = β
|