MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Structured version   Visualization version   GIF version

Theorem cf0 10289
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0 (cf‘∅) = ∅

Proof of Theorem cf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 10287 . . 3 (cf‘∅) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))}
2 0ss 4406 . . . . . . . . . . . 12 ∅ ⊆ 𝑦
32biantru 529 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))
4 ss0b 4407 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
53, 4bitr3i 277 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦) ↔ 𝑦 = ∅)
65anbi1ci 626 . . . . . . . . 9 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
76exbii 1845 . . . . . . . 8 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
8 0ex 5313 . . . . . . . . 9 ∅ ∈ V
9 fveq2 6907 . . . . . . . . . 10 (𝑦 = ∅ → (card‘𝑦) = (card‘∅))
109eqeq2d 2746 . . . . . . . . 9 (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅)))
118, 10ceqsexv 3530 . . . . . . . 8 (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅))
12 card0 9996 . . . . . . . . 9 (card‘∅) = ∅
1312eqeq2i 2748 . . . . . . . 8 (𝑥 = (card‘∅) ↔ 𝑥 = ∅)
147, 11, 133bitri 297 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ 𝑥 = ∅)
1514abbii 2807 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {𝑥𝑥 = ∅}
16 df-sn 4632 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
1715, 16eqtr4i 2766 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
1817inteqi 4955 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
198intsn 4989 . . . 4 {∅} = ∅
2018, 19eqtri 2763 . . 3 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = ∅
211, 20sseqtri 4032 . 2 (cf‘∅) ⊆ ∅
22 ss0b 4407 . 2 ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅)
2321, 22mpbi 230 1 (cf‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1776  {cab 2712  wss 3963  c0 4339  {csn 4631   cuni 4912   cint 4951  cfv 6563  cardccrd 9973  cfccf 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-en 8985  df-card 9977  df-cf 9979
This theorem is referenced by:  cfeq0  10294  cflim2  10301  cfidm  10313  alephsing  10314  alephreg  10620  pwcfsdom  10621  rankcf  10815
  Copyright terms: Public domain W3C validator