MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Structured version   Visualization version   GIF version

Theorem cf0 10204
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0 (cf‘∅) = ∅

Proof of Theorem cf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 10202 . . 3 (cf‘∅) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))}
2 0ss 4363 . . . . . . . . . . . 12 ∅ ⊆ 𝑦
32biantru 529 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))
4 ss0b 4364 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
53, 4bitr3i 277 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦) ↔ 𝑦 = ∅)
65anbi1ci 626 . . . . . . . . 9 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
76exbii 1848 . . . . . . . 8 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
8 0ex 5262 . . . . . . . . 9 ∅ ∈ V
9 fveq2 6858 . . . . . . . . . 10 (𝑦 = ∅ → (card‘𝑦) = (card‘∅))
109eqeq2d 2740 . . . . . . . . 9 (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅)))
118, 10ceqsexv 3498 . . . . . . . 8 (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅))
12 card0 9911 . . . . . . . . 9 (card‘∅) = ∅
1312eqeq2i 2742 . . . . . . . 8 (𝑥 = (card‘∅) ↔ 𝑥 = ∅)
147, 11, 133bitri 297 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ 𝑥 = ∅)
1514abbii 2796 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {𝑥𝑥 = ∅}
16 df-sn 4590 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
1715, 16eqtr4i 2755 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
1817inteqi 4914 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
198intsn 4948 . . . 4 {∅} = ∅
2018, 19eqtri 2752 . . 3 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = ∅
211, 20sseqtri 3995 . 2 (cf‘∅) ⊆ ∅
22 ss0b 4364 . 2 ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅)
2321, 22mpbi 230 1 (cf‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  {cab 2707  wss 3914  c0 4296  {csn 4589   cuni 4871   cint 4910  cfv 6511  cardccrd 9888  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-en 8919  df-card 9892  df-cf 9894
This theorem is referenced by:  cfeq0  10209  cflim2  10216  cfidm  10228  alephsing  10229  alephreg  10535  pwcfsdom  10536  rankcf  10730
  Copyright terms: Public domain W3C validator