![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cf0 | Structured version Visualization version GIF version |
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
cf0 | ⊢ (cf‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfub 9469 | . . 3 ⊢ (cf‘∅) ⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} | |
2 | 0ss 4236 | . . . . . . . . . . . 12 ⊢ ∅ ⊆ ∪ 𝑦 | |
3 | 2 | biantru 522 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) |
4 | ss0b 4237 | . . . . . . . . . . 11 ⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) | |
5 | 3, 4 | bitr3i 269 | . . . . . . . . . 10 ⊢ ((𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦) ↔ 𝑦 = ∅) |
6 | 5 | anbi1ci 616 | . . . . . . . . 9 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
7 | 6 | exbii 1810 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
8 | 0ex 5068 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
9 | fveq2 6499 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (card‘𝑦) = (card‘∅)) | |
10 | 9 | eqeq2d 2788 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅))) |
11 | 8, 10 | ceqsexv 3462 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅)) |
12 | card0 9181 | . . . . . . . . 9 ⊢ (card‘∅) = ∅ | |
13 | 12 | eqeq2i 2790 | . . . . . . . 8 ⊢ (𝑥 = (card‘∅) ↔ 𝑥 = ∅) |
14 | 7, 11, 13 | 3bitri 289 | . . . . . . 7 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ 𝑥 = ∅) |
15 | 14 | abbii 2844 | . . . . . 6 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {𝑥 ∣ 𝑥 = ∅} |
16 | df-sn 4442 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
17 | 15, 16 | eqtr4i 2805 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {∅} |
18 | 17 | inteqi 4753 | . . . 4 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∩ {∅} |
19 | 8 | intsn 4785 | . . . 4 ⊢ ∩ {∅} = ∅ |
20 | 18, 19 | eqtri 2802 | . . 3 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∅ |
21 | 1, 20 | sseqtri 3893 | . 2 ⊢ (cf‘∅) ⊆ ∅ |
22 | ss0b 4237 | . 2 ⊢ ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅) | |
23 | 21, 22 | mpbi 222 | 1 ⊢ (cf‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∃wex 1742 {cab 2758 ⊆ wss 3829 ∅c0 4178 {csn 4441 ∪ cuni 4712 ∩ cint 4749 ‘cfv 6188 cardccrd 9158 cfccf 9160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-ord 6032 df-on 6033 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-en 8307 df-card 9162 df-cf 9164 |
This theorem is referenced by: cfeq0 9476 cflim2 9483 cfidm 9495 alephsing 9496 alephreg 9802 pwcfsdom 9803 rankcf 9997 |
Copyright terms: Public domain | W3C validator |