MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Structured version   Visualization version   GIF version

Theorem cf0 10320
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0 (cf‘∅) = ∅

Proof of Theorem cf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 10318 . . 3 (cf‘∅) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))}
2 0ss 4423 . . . . . . . . . . . 12 ∅ ⊆ 𝑦
32biantru 529 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))
4 ss0b 4424 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
53, 4bitr3i 277 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦) ↔ 𝑦 = ∅)
65anbi1ci 625 . . . . . . . . 9 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
76exbii 1846 . . . . . . . 8 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
8 0ex 5325 . . . . . . . . 9 ∅ ∈ V
9 fveq2 6920 . . . . . . . . . 10 (𝑦 = ∅ → (card‘𝑦) = (card‘∅))
109eqeq2d 2751 . . . . . . . . 9 (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅)))
118, 10ceqsexv 3542 . . . . . . . 8 (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅))
12 card0 10027 . . . . . . . . 9 (card‘∅) = ∅
1312eqeq2i 2753 . . . . . . . 8 (𝑥 = (card‘∅) ↔ 𝑥 = ∅)
147, 11, 133bitri 297 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ 𝑥 = ∅)
1514abbii 2812 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {𝑥𝑥 = ∅}
16 df-sn 4649 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
1715, 16eqtr4i 2771 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
1817inteqi 4974 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
198intsn 5008 . . . 4 {∅} = ∅
2018, 19eqtri 2768 . . 3 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = ∅
211, 20sseqtri 4045 . 2 (cf‘∅) ⊆ ∅
22 ss0b 4424 . 2 ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅)
2321, 22mpbi 230 1 (cf‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  {cab 2717  wss 3976  c0 4352  {csn 4648   cuni 4931   cint 4970  cfv 6573  cardccrd 10004  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-en 9004  df-card 10008  df-cf 10010
This theorem is referenced by:  cfeq0  10325  cflim2  10332  cfidm  10344  alephsing  10345  alephreg  10651  pwcfsdom  10652  rankcf  10846
  Copyright terms: Public domain W3C validator