MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Structured version   Visualization version   GIF version

Theorem cf0 9830
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0 (cf‘∅) = ∅

Proof of Theorem cf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 9828 . . 3 (cf‘∅) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))}
2 0ss 4297 . . . . . . . . . . . 12 ∅ ⊆ 𝑦
32biantru 533 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))
4 ss0b 4298 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
53, 4bitr3i 280 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦) ↔ 𝑦 = ∅)
65anbi1ci 629 . . . . . . . . 9 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
76exbii 1855 . . . . . . . 8 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
8 0ex 5185 . . . . . . . . 9 ∅ ∈ V
9 fveq2 6695 . . . . . . . . . 10 (𝑦 = ∅ → (card‘𝑦) = (card‘∅))
109eqeq2d 2747 . . . . . . . . 9 (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅)))
118, 10ceqsexv 3445 . . . . . . . 8 (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅))
12 card0 9539 . . . . . . . . 9 (card‘∅) = ∅
1312eqeq2i 2749 . . . . . . . 8 (𝑥 = (card‘∅) ↔ 𝑥 = ∅)
147, 11, 133bitri 300 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ 𝑥 = ∅)
1514abbii 2801 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {𝑥𝑥 = ∅}
16 df-sn 4528 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
1715, 16eqtr4i 2762 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
1817inteqi 4849 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
198intsn 4883 . . . 4 {∅} = ∅
2018, 19eqtri 2759 . . 3 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = ∅
211, 20sseqtri 3923 . 2 (cf‘∅) ⊆ ∅
22 ss0b 4298 . 2 ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅)
2321, 22mpbi 233 1 (cf‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wex 1787  {cab 2714  wss 3853  c0 4223  {csn 4527   cuni 4805   cint 4845  cfv 6358  cardccrd 9516  cfccf 9518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-en 8605  df-card 9520  df-cf 9522
This theorem is referenced by:  cfeq0  9835  cflim2  9842  cfidm  9854  alephsing  9855  alephreg  10161  pwcfsdom  10162  rankcf  10356
  Copyright terms: Public domain W3C validator