![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coep | Structured version Visualization version GIF version |
Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
coep.1 | ⊢ 𝐴 ∈ V |
coep.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coep | ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coep.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
2 | 1 | epeli 5581 | . . . 4 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1ci 626 | . . 3 ⊢ ((𝐴𝑅𝑥 ∧ 𝑥 E 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝐴𝑅𝑥)) |
4 | 3 | exbii 1850 | . 2 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝑥 E 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴𝑅𝑥)) |
5 | coep.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5, 1 | brco 5868 | . 2 ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥 E 𝐵)) |
7 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴𝑅𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴𝑅𝑥)) | |
8 | 4, 6, 7 | 3bitr4i 302 | 1 ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 class class class wbr 5147 E cep 5578 ∘ ccom 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 df-co 5684 |
This theorem is referenced by: dffr5 34712 brbigcup 34858 elfuns 34875 brimage 34886 |
Copyright terms: Public domain | W3C validator |