Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coep Structured version   Visualization version   GIF version

Theorem coep 35716
Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
coep.1 𝐴 ∈ V
coep.2 𝐵 ∈ V
Assertion
Ref Expression
coep (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥𝐵 𝐴𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem coep
StepHypRef Expression
1 coep.2 . . . . 5 𝐵 ∈ V
21epeli 5601 . . . 4 (𝑥 E 𝐵𝑥𝐵)
32anbi1ci 625 . . 3 ((𝐴𝑅𝑥𝑥 E 𝐵) ↔ (𝑥𝐵𝐴𝑅𝑥))
43exbii 1846 . 2 (∃𝑥(𝐴𝑅𝑥𝑥 E 𝐵) ↔ ∃𝑥(𝑥𝐵𝐴𝑅𝑥))
5 coep.1 . . 3 𝐴 ∈ V
65, 1brco 5895 . 2 (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝑥 E 𝐵))
7 df-rex 3077 . 2 (∃𝑥𝐵 𝐴𝑅𝑥 ↔ ∃𝑥(𝑥𝐵𝐴𝑅𝑥))
84, 6, 73bitr4i 303 1 (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥𝐵 𝐴𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1777  wcel 2108  wrex 3076  Vcvv 3488   class class class wbr 5166   E cep 5598  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-co 5709
This theorem is referenced by:  dffr5  35718  brbigcup  35864  elfuns  35881  brimage  35892
  Copyright terms: Public domain W3C validator