Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coep Structured version   Visualization version   GIF version

Theorem coep 32871
 Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
coep.1 𝐴 ∈ V
coep.2 𝐵 ∈ V
Assertion
Ref Expression
coep (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥𝐵 𝐴𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem coep
StepHypRef Expression
1 coep.2 . . . . 5 𝐵 ∈ V
21epeli 5467 . . . 4 (𝑥 E 𝐵𝑥𝐵)
32anbi1ci 625 . . 3 ((𝐴𝑅𝑥𝑥 E 𝐵) ↔ (𝑥𝐵𝐴𝑅𝑥))
43exbii 1841 . 2 (∃𝑥(𝐴𝑅𝑥𝑥 E 𝐵) ↔ ∃𝑥(𝑥𝐵𝐴𝑅𝑥))
5 coep.1 . . 3 𝐴 ∈ V
65, 1brco 5740 . 2 (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝑥 E 𝐵))
7 df-rex 3149 . 2 (∃𝑥𝐵 𝐴𝑅𝑥 ↔ ∃𝑥(𝑥𝐵𝐴𝑅𝑥))
84, 6, 73bitr4i 304 1 (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥𝐵 𝐴𝑅𝑥)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   ∧ wa 396  ∃wex 1773   ∈ wcel 2107  ∃wrex 3144  Vcvv 3500   class class class wbr 5063   E cep 5463   ∘ ccom 5558 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-eprel 5464  df-co 5563 This theorem is referenced by:  dffr5  32873  brbigcup  33243  elfuns  33260  brimage  33271
 Copyright terms: Public domain W3C validator