| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coep | Structured version Visualization version GIF version | ||
| Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| coep.1 | ⊢ 𝐴 ∈ V |
| coep.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coep | ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coep.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 2 | 1 | epeli 5523 | . . . 4 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1ci 626 | . . 3 ⊢ ((𝐴𝑅𝑥 ∧ 𝑥 E 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝐴𝑅𝑥)) |
| 4 | 3 | exbii 1849 | . 2 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝑥 E 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴𝑅𝑥)) |
| 5 | coep.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | 5, 1 | brco 5816 | . 2 ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥 E 𝐵)) |
| 7 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴𝑅𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴𝑅𝑥)) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 class class class wbr 5095 E cep 5520 ∘ ccom 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 df-co 5630 |
| This theorem is referenced by: dffr5 35870 brbigcup 36012 elfuns 36029 brimage 36040 |
| Copyright terms: Public domain | W3C validator |