Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrncnvepres Structured version   Visualization version   GIF version

Theorem rnxrncnvepres 38467
Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
Assertion
Ref Expression
rnxrncnvepres ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦

Proof of Theorem rnxrncnvepres
StepHypRef Expression
1 rnxrnres 38466 . 2 ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 E 𝑦)}
2 brcnvep 38322 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑦𝑦𝑢))
32elv 3442 . . . . 5 (𝑢 E 𝑦𝑦𝑢)
43anbi1ci 626 . . . 4 ((𝑢𝑅𝑥𝑢 E 𝑦) ↔ (𝑦𝑢𝑢𝑅𝑥))
54rexbii 3080 . . 3 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢 E 𝑦) ↔ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥))
65opabbii 5160 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
71, 6eqtri 2756 1 ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437   class class class wbr 5093  {copab 5155   E cep 5518  ccnv 5618  ran crn 5620  cres 5621  cxrn 38234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7927  df-2nd 7928  df-ec 8630  df-xrn 38424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator