| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrncnvepres | Structured version Visualization version GIF version | ||
| Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| Ref | Expression |
|---|---|
| rnxrncnvepres | ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrnres 38359 | . 2 ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦)} | |
| 2 | brcnvep 38225 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢)) | |
| 3 | 2 | elv 3468 | . . . . 5 ⊢ (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢) |
| 4 | 3 | anbi1ci 626 | . . . 4 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦) ↔ (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)) |
| 5 | 4 | rexbii 3082 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)) |
| 6 | 5 | opabbii 5190 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} |
| 7 | 1, 6 | eqtri 2757 | 1 ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 {copab 5185 E cep 5563 ◡ccnv 5664 ran crn 5666 ↾ cres 5667 ⋉ cxrn 38140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-eprel 5564 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7996 df-2nd 7997 df-ec 8729 df-xrn 38331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |