Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrncnvepres Structured version   Visualization version   GIF version

Theorem rnxrncnvepres 38431
Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
Assertion
Ref Expression
rnxrncnvepres ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦

Proof of Theorem rnxrncnvepres
StepHypRef Expression
1 rnxrnres 38430 . 2 ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 E 𝑦)}
2 brcnvep 38299 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑦𝑦𝑢))
32elv 3441 . . . . 5 (𝑢 E 𝑦𝑦𝑢)
43anbi1ci 626 . . . 4 ((𝑢𝑅𝑥𝑢 E 𝑦) ↔ (𝑦𝑢𝑢𝑅𝑥))
54rexbii 3079 . . 3 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢 E 𝑦) ↔ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥))
65opabbii 5158 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
71, 6eqtri 2754 1 ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436   class class class wbr 5091  {copab 5153   E cep 5515  ccnv 5615  ran crn 5617  cres 5618  cxrn 38213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator