![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrncnvepres | Structured version Visualization version GIF version |
Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
Ref | Expression |
---|---|
rnxrncnvepres | ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxrnres 37808 | . 2 ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦)} | |
2 | brcnvep 37672 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢)) | |
3 | 2 | elv 3475 | . . . . 5 ⊢ (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢) |
4 | 3 | anbi1ci 625 | . . . 4 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦) ↔ (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)) |
5 | 4 | rexbii 3089 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)) |
6 | 5 | opabbii 5209 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢◡ E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} |
7 | 1, 6 | eqtri 2755 | 1 ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 class class class wbr 5142 {copab 5204 E cep 5575 ◡ccnv 5671 ran crn 5673 ↾ cres 5674 ⋉ cxrn 37582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7987 df-2nd 7988 df-ec 8720 df-xrn 37780 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |