MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqscut2 Structured version   Visualization version   GIF version

Theorem eqscut2 27745
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅   𝑦,𝑋

Proof of Theorem eqscut2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqscut 27744 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))))
2 eqss 3950 . . . . 5 (( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋)))
3 sneq 4586 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → {𝑥} = {𝑋})
43breq2d 5103 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
53breq1d 5101 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
64, 5anbi12d 632 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
76elrab3 3648 . . . . . . . . . 10 (𝑋 No → (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
87adantl 481 . . . . . . . . 9 ((𝐿 <<s 𝑅𝑋 No ) → (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
98biimpar 477 . . . . . . . 8 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → 𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})
10 bdayfn 27710 . . . . . . . . 9 bday Fn No
11 ssrab2 4030 . . . . . . . . 9 {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No
12 fnfvima 7167 . . . . . . . . 9 (( bday Fn No ∧ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No 𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))
1310, 11, 12mp3an12 1453 . . . . . . . 8 (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} → ( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))
14 intss1 4913 . . . . . . . 8 (( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))
159, 13, 143syl 18 . . . . . . 7 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))
1615biantrud 531 . . . . . 6 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))))
17 ssint 4914 . . . . . . 7 (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧)
18 fvelimab 6894 . . . . . . . . . . . . . 14 (( bday Fn No ∧ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No ) → (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧))
1910, 11, 18mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧)
20 sneq 4586 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2120breq2d 5103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
2220breq1d 5101 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
2321, 22anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
2423rexrab 3655 . . . . . . . . . . . . 13 (∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧 ↔ ∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧))
2519, 24bitri 275 . . . . . . . . . . . 12 (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧))
2625imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ (∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧))
27 r19.23v 3159 . . . . . . . . . . 11 (∀𝑦 No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ (∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧))
28 eqcom 2738 . . . . . . . . . . . . . . 15 (( bday 𝑦) = 𝑧𝑧 = ( bday 𝑦))
2928anbi1ci 626 . . . . . . . . . . . . . 14 (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) ↔ (𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
3029imbi1i 349 . . . . . . . . . . . . 13 ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ ((𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday 𝑋) ⊆ 𝑧))
31 impexp 450 . . . . . . . . . . . . 13 (((𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday 𝑋) ⊆ 𝑧) ↔ (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3230, 31bitri 275 . . . . . . . . . . . 12 ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3332ralbii 3078 . . . . . . . . . . 11 (∀𝑦 No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3426, 27, 333bitr2i 299 . . . . . . . . . 10 ((𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3534albii 1820 . . . . . . . . 9 (∀𝑧(𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑧𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
36 df-ral 3048 . . . . . . . . 9 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑧(𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧))
37 ralcom4 3258 . . . . . . . . 9 (∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ∀𝑧𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3835, 36, 373bitr4i 303 . . . . . . . 8 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
39 fvex 6835 . . . . . . . . . 10 ( bday 𝑦) ∈ V
40 sseq2 3961 . . . . . . . . . . 11 (𝑧 = ( bday 𝑦) → (( bday 𝑋) ⊆ 𝑧 ↔ ( bday 𝑋) ⊆ ( bday 𝑦)))
4140imbi2d 340 . . . . . . . . . 10 (𝑧 = ( bday 𝑦) → (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
4239, 41ceqsalv 3476 . . . . . . . . 9 (∀𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4342ralbii 3078 . . . . . . . 8 (∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4438, 43bitri 275 . . . . . . 7 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4517, 44bitri 275 . . . . . 6 (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4616, 45bitr3di 286 . . . . 5 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ((( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋)) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
472, 46bitrid 283 . . . 4 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
4847pm5.32da 579 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
49 df-3an 1088 . . 3 ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})))
50 df-3an 1088 . . 3 ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
5148, 49, 503bitr4g 314 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
521, 51bitrd 279 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3902  {csn 4576   cint 4897   class class class wbr 5091  cima 5619   Fn wfn 6476  cfv 6481  (class class class)co 7346   No csur 27576   bday cbday 27578   <<s csslt 27718   |s cscut 27720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1o 8385  df-2o 8386  df-no 27579  df-slt 27580  df-bday 27581  df-sslt 27719  df-scut 27721
This theorem is referenced by:  bday0b  27772  cuteq1  27776  onscutlt  28199
  Copyright terms: Public domain W3C validator