MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqscut2 Structured version   Visualization version   GIF version

Theorem eqscut2 27718
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅   𝑦,𝑋

Proof of Theorem eqscut2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqscut 27717 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))))
2 eqss 3962 . . . . 5 (( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋)))
3 sneq 4599 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → {𝑥} = {𝑋})
43breq2d 5119 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
53breq1d 5117 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
64, 5anbi12d 632 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
76elrab3 3660 . . . . . . . . . 10 (𝑋 No → (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
87adantl 481 . . . . . . . . 9 ((𝐿 <<s 𝑅𝑋 No ) → (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
98biimpar 477 . . . . . . . 8 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → 𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})
10 bdayfn 27685 . . . . . . . . 9 bday Fn No
11 ssrab2 4043 . . . . . . . . 9 {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No
12 fnfvima 7207 . . . . . . . . 9 (( bday Fn No ∧ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No 𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))
1310, 11, 12mp3an12 1453 . . . . . . . 8 (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} → ( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))
14 intss1 4927 . . . . . . . 8 (( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))
159, 13, 143syl 18 . . . . . . 7 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))
1615biantrud 531 . . . . . 6 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))))
17 ssint 4928 . . . . . . 7 (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧)
18 fvelimab 6933 . . . . . . . . . . . . . 14 (( bday Fn No ∧ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No ) → (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧))
1910, 11, 18mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧)
20 sneq 4599 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2120breq2d 5119 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
2220breq1d 5117 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
2321, 22anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
2423rexrab 3667 . . . . . . . . . . . . 13 (∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧 ↔ ∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧))
2519, 24bitri 275 . . . . . . . . . . . 12 (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧))
2625imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ (∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧))
27 r19.23v 3161 . . . . . . . . . . 11 (∀𝑦 No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ (∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧))
28 eqcom 2736 . . . . . . . . . . . . . . 15 (( bday 𝑦) = 𝑧𝑧 = ( bday 𝑦))
2928anbi1ci 626 . . . . . . . . . . . . . 14 (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) ↔ (𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
3029imbi1i 349 . . . . . . . . . . . . 13 ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ ((𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday 𝑋) ⊆ 𝑧))
31 impexp 450 . . . . . . . . . . . . 13 (((𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday 𝑋) ⊆ 𝑧) ↔ (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3230, 31bitri 275 . . . . . . . . . . . 12 ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3332ralbii 3075 . . . . . . . . . . 11 (∀𝑦 No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3426, 27, 333bitr2i 299 . . . . . . . . . 10 ((𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3534albii 1819 . . . . . . . . 9 (∀𝑧(𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑧𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
36 df-ral 3045 . . . . . . . . 9 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑧(𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧))
37 ralcom4 3263 . . . . . . . . 9 (∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ∀𝑧𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3835, 36, 373bitr4i 303 . . . . . . . 8 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
39 fvex 6871 . . . . . . . . . 10 ( bday 𝑦) ∈ V
40 sseq2 3973 . . . . . . . . . . 11 (𝑧 = ( bday 𝑦) → (( bday 𝑋) ⊆ 𝑧 ↔ ( bday 𝑋) ⊆ ( bday 𝑦)))
4140imbi2d 340 . . . . . . . . . 10 (𝑧 = ( bday 𝑦) → (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
4239, 41ceqsalv 3487 . . . . . . . . 9 (∀𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4342ralbii 3075 . . . . . . . 8 (∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4438, 43bitri 275 . . . . . . 7 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4517, 44bitri 275 . . . . . 6 (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4616, 45bitr3di 286 . . . . 5 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ((( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋)) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
472, 46bitrid 283 . . . 4 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
4847pm5.32da 579 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
49 df-3an 1088 . . 3 ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})))
50 df-3an 1088 . . 3 ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
5148, 49, 503bitr4g 314 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
521, 51bitrd 279 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914  {csn 4589   cint 4910   class class class wbr 5107  cima 5641   Fn wfn 6506  cfv 6511  (class class class)co 7387   No csur 27551   bday cbday 27553   <<s csslt 27692   |s cscut 27694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695
This theorem is referenced by:  bday0b  27742  cuteq1  27746  onscutlt  28165
  Copyright terms: Public domain W3C validator