Step | Hyp | Ref
| Expression |
1 | | eqscut 33926 |
. 2
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)})))) |
2 | | eqss 3932 |
. . . . 5
⊢ (( bday ‘𝑋) = ∩ ( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday
‘𝑋) ⊆
∩ ( bday “
{𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday
‘𝑋))) |
3 | | sneq 4568 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
4 | 3 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋})) |
5 | 3 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅)) |
6 | 4, 5 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅))) |
7 | 6 | elrab3 3618 |
. . . . . . . . . 10
⊢ (𝑋 ∈
No → (𝑋 ∈
{𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅))) |
8 | 7 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ (𝑋 ∈ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅))) |
9 | 8 | biimpar 477 |
. . . . . . . 8
⊢ (((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → 𝑋 ∈ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) |
10 | | bdayfn 33895 |
. . . . . . . . 9
⊢ bday Fn No
|
11 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No
|
12 | | fnfvima 7091 |
. . . . . . . . 9
⊢ (( bday Fn No ∧ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No
∧ 𝑋 ∈ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday
‘𝑋) ∈
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) |
13 | 10, 11, 12 | mp3an12 1449 |
. . . . . . . 8
⊢ (𝑋 ∈ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} → ( bday
‘𝑋) ∈
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) |
14 | | intss1 4891 |
. . . . . . . 8
⊢ (( bday ‘𝑋) ∈ ( bday
“ {𝑥 ∈
No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday
‘𝑋)) |
15 | 9, 13, 14 | 3syl 18 |
. . . . . . 7
⊢ (((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday
‘𝑋)) |
16 | 15 | biantrud 531 |
. . . . . 6
⊢ (((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday
‘𝑋) ⊆
∩ ( bday “
{𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday
‘𝑋) ⊆
∩ ( bday “
{𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday
‘𝑋)))) |
17 | | ssint 4892 |
. . . . . . 7
⊢ (( bday ‘𝑋) ⊆ ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑧 ∈ ( bday
“ {𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday
‘𝑋) ⊆
𝑧) |
18 | | fvelimab 6823 |
. . . . . . . . . . . . . 14
⊢ (( bday Fn No ∧ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No
) → (𝑧 ∈
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday
‘𝑦) = 𝑧)) |
19 | 10, 11, 18 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (
bday “ {𝑥
∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday
‘𝑦) = 𝑧) |
20 | | sneq 4568 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
21 | 20 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦})) |
22 | 20 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅)) |
23 | 21, 22 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅))) |
24 | 23 | rexrab 3626 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
{𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday
‘𝑦) = 𝑧 ↔ ∃𝑦 ∈
No ((𝐿 <<s
{𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧)) |
25 | 19, 24 | bitri 274 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (
bday “ {𝑥
∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧)) |
26 | 25 | imbi1i 349 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (
bday “ {𝑥
∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday
‘𝑋) ⊆
𝑧) ↔ (∃𝑦 ∈
No ((𝐿 <<s
{𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) → (
bday ‘𝑋)
⊆ 𝑧)) |
27 | | r19.23v 3207 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) → (
bday ‘𝑋)
⊆ 𝑧) ↔
(∃𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) → (
bday ‘𝑋)
⊆ 𝑧)) |
28 | | eqcom 2745 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘𝑦) = 𝑧 ↔ 𝑧 = ( bday
‘𝑦)) |
29 | 28 | anbi1ci 625 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) ↔ (𝑧 = ( bday
‘𝑦) ∧
(𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅))) |
30 | 29 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) → (
bday ‘𝑋)
⊆ 𝑧) ↔ ((𝑧 = ( bday
‘𝑦) ∧
(𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday
‘𝑋) ⊆
𝑧)) |
31 | | impexp 450 |
. . . . . . . . . . . . 13
⊢ (((𝑧 = ( bday
‘𝑦) ∧
(𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday
‘𝑋) ⊆
𝑧) ↔ (𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
32 | 30, 31 | bitri 274 |
. . . . . . . . . . . 12
⊢ ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) → (
bday ‘𝑋)
⊆ 𝑧) ↔ (𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
33 | 32 | ralbii 3090 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday
‘𝑦) = 𝑧) → (
bday ‘𝑋)
⊆ 𝑧) ↔
∀𝑦 ∈ No (𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
34 | 26, 27, 33 | 3bitr2i 298 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (
bday “ {𝑥
∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday
‘𝑋) ⊆
𝑧) ↔ ∀𝑦 ∈
No (𝑧 = ( bday ‘𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
35 | 34 | albii 1823 |
. . . . . . . . 9
⊢
(∀𝑧(𝑧 ∈ (
bday “ {𝑥
∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday
‘𝑋) ⊆
𝑧) ↔ ∀𝑧∀𝑦 ∈ No
(𝑧 = ( bday ‘𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
36 | | df-ral 3068 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday
‘𝑋) ⊆
𝑧 ↔ ∀𝑧(𝑧 ∈ ( bday
“ {𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday
‘𝑋) ⊆
𝑧)) |
37 | | ralcom4 3161 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
No ∀𝑧(𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧)) ↔ ∀𝑧∀𝑦 ∈ No
(𝑧 = ( bday ‘𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
38 | 35, 36, 37 | 3bitr4i 302 |
. . . . . . . 8
⊢
(∀𝑧 ∈
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday
‘𝑋) ⊆
𝑧 ↔ ∀𝑦 ∈
No ∀𝑧(𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧))) |
39 | | fvex 6769 |
. . . . . . . . . 10
⊢ ( bday ‘𝑦) ∈ V |
40 | | sseq2 3943 |
. . . . . . . . . . 11
⊢ (𝑧 = ( bday
‘𝑦) →
(( bday ‘𝑋) ⊆ 𝑧 ↔ ( bday
‘𝑋) ⊆
( bday ‘𝑦))) |
41 | 40 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑧 = ( bday
‘𝑦) →
(((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦)))) |
42 | 39, 41 | ceqsalv 3457 |
. . . . . . . . 9
⊢
(∀𝑧(𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧)) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))) |
43 | 42 | ralbii 3090 |
. . . . . . . 8
⊢
(∀𝑦 ∈
No ∀𝑧(𝑧 = ( bday
‘𝑦) →
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
𝑧)) ↔ ∀𝑦 ∈
No ((𝐿 <<s
{𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))) |
44 | 38, 43 | bitri 274 |
. . . . . . 7
⊢
(∀𝑧 ∈
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday
‘𝑋) ⊆
𝑧 ↔ ∀𝑦 ∈
No ((𝐿 <<s
{𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))) |
45 | 17, 44 | bitri 274 |
. . . . . 6
⊢ (( bday ‘𝑋) ⊆ ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))) |
46 | 16, 45 | bitr3di 285 |
. . . . 5
⊢ (((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ((( bday
‘𝑋) ⊆
∩ ( bday “
{𝑥 ∈ No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ∩
( bday “ {𝑥 ∈ No
∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday
‘𝑋)) ↔
∀𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦)))) |
47 | 2, 46 | syl5bb 282 |
. . . 4
⊢ (((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday
‘𝑋) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦)))) |
48 | 47 | pm5.32da 578 |
. . 3
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ (((𝐿 <<s
{𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))))) |
49 | | df-3an 1087 |
. . 3
⊢ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)}))) |
50 | | df-3an 1087 |
. . 3
⊢ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦)))) |
51 | 48, 49, 50 | 3bitr4g 313 |
. 2
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐿
<<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))))) |
52 | 1, 51 | bitrd 278 |
1
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No
((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday
‘𝑋) ⊆
( bday ‘𝑦))))) |