MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqscut2 Structured version   Visualization version   GIF version

Theorem eqscut2 27145
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅   𝑦,𝑋

Proof of Theorem eqscut2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqscut 27144 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))))
2 eqss 3959 . . . . 5 (( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋)))
3 sneq 4596 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → {𝑥} = {𝑋})
43breq2d 5117 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
53breq1d 5115 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
64, 5anbi12d 631 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
76elrab3 3646 . . . . . . . . . 10 (𝑋 No → (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
87adantl 482 . . . . . . . . 9 ((𝐿 <<s 𝑅𝑋 No ) → (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)))
98biimpar 478 . . . . . . . 8 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → 𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})
10 bdayfn 27113 . . . . . . . . 9 bday Fn No
11 ssrab2 4037 . . . . . . . . 9 {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No
12 fnfvima 7183 . . . . . . . . 9 (( bday Fn No ∧ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No 𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))
1310, 11, 12mp3an12 1451 . . . . . . . 8 (𝑋 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} → ( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}))
14 intss1 4924 . . . . . . . 8 (( bday 𝑋) ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))
159, 13, 143syl 18 . . . . . . 7 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))
1615biantrud 532 . . . . . 6 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋))))
17 ssint 4925 . . . . . . 7 (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧)
18 fvelimab 6914 . . . . . . . . . . . . . 14 (( bday Fn No ∧ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ⊆ No ) → (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧))
1910, 11, 18mp2an 690 . . . . . . . . . . . . 13 (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧)
20 sneq 4596 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2120breq2d 5117 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
2220breq1d 5115 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
2321, 22anbi12d 631 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
2423rexrab 3654 . . . . . . . . . . . . 13 (∃𝑦 ∈ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)} ( bday 𝑦) = 𝑧 ↔ ∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧))
2519, 24bitri 274 . . . . . . . . . . . 12 (𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧))
2625imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ (∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧))
27 r19.23v 3179 . . . . . . . . . . 11 (∀𝑦 No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ (∃𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧))
28 eqcom 2743 . . . . . . . . . . . . . . 15 (( bday 𝑦) = 𝑧𝑧 = ( bday 𝑦))
2928anbi1ci 626 . . . . . . . . . . . . . 14 (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) ↔ (𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
3029imbi1i 349 . . . . . . . . . . . . 13 ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ ((𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday 𝑋) ⊆ 𝑧))
31 impexp 451 . . . . . . . . . . . . 13 (((𝑧 = ( bday 𝑦) ∧ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)) → ( bday 𝑋) ⊆ 𝑧) ↔ (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3230, 31bitri 274 . . . . . . . . . . . 12 ((((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3332ralbii 3096 . . . . . . . . . . 11 (∀𝑦 No (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) ∧ ( bday 𝑦) = 𝑧) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3426, 27, 333bitr2i 298 . . . . . . . . . 10 ((𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3534albii 1821 . . . . . . . . 9 (∀𝑧(𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧) ↔ ∀𝑧𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
36 df-ral 3065 . . . . . . . . 9 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑧(𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) → ( bday 𝑋) ⊆ 𝑧))
37 ralcom4 3269 . . . . . . . . 9 (∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ∀𝑧𝑦 No (𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
3835, 36, 373bitr4i 302 . . . . . . . 8 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)))
39 fvex 6855 . . . . . . . . . 10 ( bday 𝑦) ∈ V
40 sseq2 3970 . . . . . . . . . . 11 (𝑧 = ( bday 𝑦) → (( bday 𝑋) ⊆ 𝑧 ↔ ( bday 𝑋) ⊆ ( bday 𝑦)))
4140imbi2d 340 . . . . . . . . . 10 (𝑧 = ( bday 𝑦) → (((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
4239, 41ceqsalv 3481 . . . . . . . . 9 (∀𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4342ralbii 3096 . . . . . . . 8 (∀𝑦 No 𝑧(𝑧 = ( bday 𝑦) → ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ 𝑧)) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4438, 43bitri 274 . . . . . . 7 (∀𝑧 ∈ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})( bday 𝑋) ⊆ 𝑧 ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4517, 44bitri 274 . . . . . 6 (( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))
4616, 45bitr3di 285 . . . . 5 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → ((( bday 𝑋) ⊆ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ∧ ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ⊆ ( bday 𝑋)) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
472, 46bitrid 282 . . . 4 (((𝐿 <<s 𝑅𝑋 No ) ∧ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅)) → (( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)}) ↔ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
4847pm5.32da 579 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
49 df-3an 1089 . . 3 ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})))
50 df-3an 1089 . . 3 ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))) ↔ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅) ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦))))
5148, 49, 503bitr4g 313 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑥 No ∣ (𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
521, 51bitrd 278 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday 𝑋) ⊆ ( bday 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  wss 3910  {csn 4586   cint 4907   class class class wbr 5105  cima 5636   Fn wfn 6491  cfv 6496  (class class class)co 7357   No csur 26988   bday cbday 26990   <<s csslt 27120   |s cscut 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sslt 27121  df-scut 27123
This theorem is referenced by:  bday0b  27169
  Copyright terms: Public domain W3C validator