| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2573 elon2 6368 fununi 6616 fnopabg 6680 eqfnfv3 7028 respreima 7061 fsn 7130 brtpos2 8236 tpostpos 8250 oeeu 8620 mapval2 8891 xrltlen 13167 ssfzoulel 13781 xpcogend 14998 dfgcd2 16570 isffth2 17936 resscntz 19321 fiidomfld 20739 1stcelcls 23404 txflf 23949 fclsrest 23967 tsmssubm 24086 blres 24375 xrtgioo 24751 isncvsngp 25106 itg1climres 25672 ellimc3 25837 lgsquadlem1 27348 lgsquadlem2 27349 wlkson 29641 0clwlk 30116 dmrab 32483 qusker 33369 bnj594 34948 satf0 35399 bj-elid6 37193 bj-imdirco 37213 wl-df4-3mintru2 37510 poimirlem4 37653 rabeqel 38277 iss2 38367 ifp1bi 43501 prprelprb 47511 prprspr2 47512 dfsclnbgr6 47851 eliunxp2 48289 |
| Copyright terms: Public domain | W3C validator |