![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
Ref | Expression |
---|---|
biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
Ref | Expression |
---|---|
biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2571 elon2 6397 fununi 6643 fnopabg 6706 eqfnfv3 7053 respreima 7086 fsn 7155 brtpos2 8256 tpostpos 8270 oeeu 8640 mapval2 8911 xrltlen 13185 ssfzoulel 13796 xpcogend 15010 dfgcd2 16580 isffth2 17970 resscntz 19364 fiidomfld 20792 1stcelcls 23485 txflf 24030 fclsrest 24048 tsmssubm 24167 blres 24457 xrtgioo 24842 isncvsngp 25197 itg1climres 25764 ellimc3 25929 lgsquadlem1 27439 lgsquadlem2 27440 wlkson 29689 0clwlk 30159 dmrab 32525 qusker 33357 bnj594 34905 satf0 35357 bj-elid6 37153 bj-imdirco 37173 wl-df4-3mintru2 37470 poimirlem4 37611 rabeqel 38236 iss2 38326 ifp1bi 43492 prprelprb 47442 prprspr2 47443 dfsclnbgr6 47782 eliunxp2 48179 |
Copyright terms: Public domain | W3C validator |