Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
Ref | Expression |
---|---|
biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
Ref | Expression |
---|---|
biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
2 | ancom 462 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: biantrur 532 rbaibr 539 pm4.71ri 562 anbi2ci 626 anbi1ci 627 anbi12ci 629 an12 643 an32 644 mpbiran2 708 eu6lem 2571 elon2 6292 fununi 6538 fnopabg 6600 eqfnfv3 6943 respreima 6975 fsn 7039 brtpos2 8079 tpostpos 8093 oeeu 8465 mapval2 8691 xrltlen 12930 ssfzoulel 13531 xpcogend 14734 dfgcd2 16303 isffth2 17681 resscntz 18987 fiidomfld 20629 1stcelcls 22661 txflf 23206 fclsrest 23224 tsmssubm 23343 blres 23633 xrtgioo 24018 isncvsngp 24362 itg1climres 24928 ellimc3 25092 lgsquadlem1 26577 lgsquadlem2 26578 wlkson 28073 0clwlk 28543 dmrab 30893 qusker 31598 bnj594 32941 satf0 33383 bj-elid6 35389 bj-imdirco 35409 wl-df4-3mintru2 35706 poimirlem4 35829 rabeqel 36464 iss2 36557 ifp1bi 41322 prprelprb 45213 prprspr2 45214 eliunxp2 45913 |
Copyright terms: Public domain | W3C validator |