| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2571 elon2 6376 fununi 6622 fnopabg 6686 eqfnfv3 7034 respreima 7067 fsn 7136 brtpos2 8240 tpostpos 8254 oeeu 8624 mapval2 8895 xrltlen 13171 ssfzoulel 13782 xpcogend 14996 dfgcd2 16566 isffth2 17939 resscntz 19325 fiidomfld 20748 1stcelcls 23434 txflf 23979 fclsrest 23997 tsmssubm 24116 blres 24405 xrtgioo 24783 isncvsngp 25138 itg1climres 25704 ellimc3 25869 lgsquadlem1 27379 lgsquadlem2 27380 wlkson 29621 0clwlk 30096 dmrab 32463 qusker 33318 bnj594 34867 satf0 35318 bj-elid6 37112 bj-imdirco 37132 wl-df4-3mintru2 37429 poimirlem4 37572 rabeqel 38196 iss2 38286 ifp1bi 43460 prprelprb 47450 prprspr2 47451 dfsclnbgr6 47790 eliunxp2 48196 |
| Copyright terms: Public domain | W3C validator |