| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2568 elon2 6317 fununi 6556 fnopabg 6618 eqfnfv3 6966 respreima 6999 fsn 7068 brtpos2 8162 tpostpos 8176 oeeu 8518 mapval2 8796 xrltlen 13045 ssfzoulel 13660 xpcogend 14881 dfgcd2 16457 isffth2 17825 resscntz 19245 fiidomfld 20689 1stcelcls 23376 txflf 23921 fclsrest 23939 tsmssubm 24058 blres 24346 xrtgioo 24722 isncvsngp 25076 itg1climres 25642 ellimc3 25807 lgsquadlem1 27318 lgsquadlem2 27319 wlkson 29633 0clwlk 30110 dmrab 32476 qusker 33314 bnj594 34924 satf0 35416 bj-elid6 37214 bj-imdirco 37234 wl-df4-3mintru2 37531 poimirlem4 37663 rabeqel 38290 iss2 38375 ifp1bi 43594 prprelprb 47616 prprspr2 47617 dfsclnbgr6 47957 eliunxp2 48433 |
| Copyright terms: Public domain | W3C validator |