| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2566 elon2 6331 fununi 6575 fnopabg 6637 eqfnfv3 6987 respreima 7020 fsn 7089 brtpos2 8188 tpostpos 8202 oeeu 8544 mapval2 8822 xrltlen 13082 ssfzoulel 13697 xpcogend 14916 dfgcd2 16492 isffth2 17860 resscntz 19247 fiidomfld 20694 1stcelcls 23381 txflf 23926 fclsrest 23944 tsmssubm 24063 blres 24352 xrtgioo 24728 isncvsngp 25082 itg1climres 25648 ellimc3 25813 lgsquadlem1 27324 lgsquadlem2 27325 wlkson 29635 0clwlk 30109 dmrab 32476 qusker 33313 bnj594 34895 satf0 35352 bj-elid6 37151 bj-imdirco 37171 wl-df4-3mintru2 37468 poimirlem4 37611 rabeqel 38236 iss2 38319 ifp1bi 43484 prprelprb 47511 prprspr2 47512 dfsclnbgr6 47851 eliunxp2 48315 |
| Copyright terms: Public domain | W3C validator |