Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
Ref | Expression |
---|---|
biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
Ref | Expression |
---|---|
biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 624 anbi1ci 625 anbi12ci 627 an12 641 an32 642 mpbiran2 706 eu6lem 2574 elon2 6274 fununi 6505 fnopabg 6566 eqfnfv3 6905 respreima 6937 fsn 7001 brtpos2 8032 tpostpos 8046 oeeu 8410 mapval2 8634 xrltlen 12862 ssfzoulel 13462 xpcogend 14666 dfgcd2 16235 isffth2 17613 resscntz 18919 fiidomfld 20561 1stcelcls 22593 txflf 23138 fclsrest 23156 tsmssubm 23275 blres 23565 xrtgioo 23950 isncvsngp 24294 itg1climres 24860 ellimc3 25024 lgsquadlem1 26509 lgsquadlem2 26510 wlkson 28004 0clwlk 28473 dmrab 30823 qusker 31528 bnj594 32871 satf0 33313 bj-elid6 35320 bj-imdirco 35340 wl-df4-3mintru2 35637 poimirlem4 35760 rabeqel 36373 iss2 36458 ifp1bi 41071 prprelprb 44921 prprspr2 44922 eliunxp2 45621 |
Copyright terms: Public domain | W3C validator |