| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2572 elon2 6363 fununi 6610 fnopabg 6674 eqfnfv3 7022 respreima 7055 fsn 7124 brtpos2 8229 tpostpos 8243 oeeu 8613 mapval2 8884 xrltlen 13160 ssfzoulel 13774 xpcogend 14991 dfgcd2 16563 isffth2 17929 resscntz 19314 fiidomfld 20732 1stcelcls 23397 txflf 23942 fclsrest 23960 tsmssubm 24079 blres 24368 xrtgioo 24744 isncvsngp 25099 itg1climres 25665 ellimc3 25830 lgsquadlem1 27341 lgsquadlem2 27342 wlkson 29582 0clwlk 30057 dmrab 32424 qusker 33310 bnj594 34889 satf0 35340 bj-elid6 37134 bj-imdirco 37154 wl-df4-3mintru2 37451 poimirlem4 37594 rabeqel 38218 iss2 38308 ifp1bi 43473 prprelprb 47479 prprspr2 47480 dfsclnbgr6 47819 eliunxp2 48257 |
| Copyright terms: Public domain | W3C validator |