| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2567 elon2 6345 fununi 6593 fnopabg 6657 eqfnfv3 7007 respreima 7040 fsn 7109 brtpos2 8213 tpostpos 8227 oeeu 8569 mapval2 8847 xrltlen 13112 ssfzoulel 13727 xpcogend 14946 dfgcd2 16522 isffth2 17886 resscntz 19271 fiidomfld 20689 1stcelcls 23354 txflf 23899 fclsrest 23917 tsmssubm 24036 blres 24325 xrtgioo 24701 isncvsngp 25055 itg1climres 25621 ellimc3 25786 lgsquadlem1 27297 lgsquadlem2 27298 wlkson 29590 0clwlk 30065 dmrab 32432 qusker 33326 bnj594 34908 satf0 35359 bj-elid6 37153 bj-imdirco 37173 wl-df4-3mintru2 37470 poimirlem4 37613 rabeqel 38238 iss2 38321 ifp1bi 43484 prprelprb 47508 prprspr2 47509 dfsclnbgr6 47848 eliunxp2 48312 |
| Copyright terms: Public domain | W3C validator |