| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomi | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| biancomi.1 | ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| biancomi | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomi.1 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 rbaibr 537 pm4.71ri 560 anbi2ci 625 anbi1ci 626 anbi12ci 629 an12 645 an32 646 mpbiran2 710 eu6lem 2566 elon2 6318 fununi 6557 fnopabg 6619 eqfnfv3 6967 respreima 7000 fsn 7069 brtpos2 8165 tpostpos 8179 oeeu 8521 mapval2 8799 xrltlen 13048 ssfzoulel 13663 xpcogend 14881 dfgcd2 16457 isffth2 17825 resscntz 19212 fiidomfld 20659 1stcelcls 23346 txflf 23891 fclsrest 23909 tsmssubm 24028 blres 24317 xrtgioo 24693 isncvsngp 25047 itg1climres 25613 ellimc3 25778 lgsquadlem1 27289 lgsquadlem2 27290 wlkson 29600 0clwlk 30074 dmrab 32441 qusker 33287 bnj594 34885 satf0 35355 bj-elid6 37154 bj-imdirco 37174 wl-df4-3mintru2 37471 poimirlem4 37614 rabeqel 38239 iss2 38322 ifp1bi 43485 prprelprb 47511 prprspr2 47512 dfsclnbgr6 47852 eliunxp2 48328 |
| Copyright terms: Public domain | W3C validator |