MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem3 Structured version   Visualization version   GIF version

Theorem dfac5lem3 9739
Description: Lemma for dfac5 9742. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
Assertion
Ref Expression
dfac5lem3 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
Distinct variable groups:   𝑤,𝑢,𝑡,   𝑤,𝐴
Allowed substitution hints:   𝐴(𝑢,𝑡,)

Proof of Theorem dfac5lem3
StepHypRef Expression
1 snex 5324 . . . 4 {𝑤} ∈ V
2 vex 3412 . . . 4 𝑤 ∈ V
31, 2xpex 7538 . . 3 ({𝑤} × 𝑤) ∈ V
4 neeq1 3003 . . . 4 (𝑢 = ({𝑤} × 𝑤) → (𝑢 ≠ ∅ ↔ ({𝑤} × 𝑤) ≠ ∅))
5 eqeq1 2741 . . . . 5 (𝑢 = ({𝑤} × 𝑤) → (𝑢 = ({𝑡} × 𝑡) ↔ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
65rexbidv 3216 . . . 4 (𝑢 = ({𝑤} × 𝑤) → (∃𝑡 𝑢 = ({𝑡} × 𝑡) ↔ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
74, 6anbi12d 634 . . 3 (𝑢 = ({𝑤} × 𝑤) → ((𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡)) ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡))))
83, 7elab 3587 . 2 (({𝑤} × 𝑤) ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
9 dfac5lem.1 . . 3 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
109eleq2i 2829 . 2 (({𝑤} × 𝑤) ∈ 𝐴 ↔ ({𝑤} × 𝑤) ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))})
11 xpeq2 5572 . . . . . 6 (𝑤 = ∅ → ({𝑤} × 𝑤) = ({𝑤} × ∅))
12 xp0 6021 . . . . . 6 ({𝑤} × ∅) = ∅
1311, 12eqtrdi 2794 . . . . 5 (𝑤 = ∅ → ({𝑤} × 𝑤) = ∅)
14 rneq 5805 . . . . . 6 (({𝑤} × 𝑤) = ∅ → ran ({𝑤} × 𝑤) = ran ∅)
152snnz 4692 . . . . . . 7 {𝑤} ≠ ∅
16 rnxp 6033 . . . . . . 7 ({𝑤} ≠ ∅ → ran ({𝑤} × 𝑤) = 𝑤)
1715, 16ax-mp 5 . . . . . 6 ran ({𝑤} × 𝑤) = 𝑤
18 rn0 5795 . . . . . 6 ran ∅ = ∅
1914, 17, 183eqtr3g 2801 . . . . 5 (({𝑤} × 𝑤) = ∅ → 𝑤 = ∅)
2013, 19impbii 212 . . . 4 (𝑤 = ∅ ↔ ({𝑤} × 𝑤) = ∅)
2120necon3bii 2993 . . 3 (𝑤 ≠ ∅ ↔ ({𝑤} × 𝑤) ≠ ∅)
22 df-rex 3067 . . . 4 (∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ ∃𝑡(𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
23 rneq 5805 . . . . . . . . 9 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) → ran ({𝑤} × 𝑤) = ran ({𝑡} × 𝑡))
24 vex 3412 . . . . . . . . . . 11 𝑡 ∈ V
2524snnz 4692 . . . . . . . . . 10 {𝑡} ≠ ∅
26 rnxp 6033 . . . . . . . . . 10 ({𝑡} ≠ ∅ → ran ({𝑡} × 𝑡) = 𝑡)
2725, 26ax-mp 5 . . . . . . . . 9 ran ({𝑡} × 𝑡) = 𝑡
2823, 17, 273eqtr3g 2801 . . . . . . . 8 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) → 𝑤 = 𝑡)
29 sneq 4551 . . . . . . . . . 10 (𝑤 = 𝑡 → {𝑤} = {𝑡})
3029xpeq1d 5580 . . . . . . . . 9 (𝑤 = 𝑡 → ({𝑤} × 𝑤) = ({𝑡} × 𝑤))
31 xpeq2 5572 . . . . . . . . 9 (𝑤 = 𝑡 → ({𝑡} × 𝑤) = ({𝑡} × 𝑡))
3230, 31eqtrd 2777 . . . . . . . 8 (𝑤 = 𝑡 → ({𝑤} × 𝑤) = ({𝑡} × 𝑡))
3328, 32impbii 212 . . . . . . 7 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ 𝑤 = 𝑡)
34 equcom 2026 . . . . . . 7 (𝑤 = 𝑡𝑡 = 𝑤)
3533, 34bitri 278 . . . . . 6 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ 𝑡 = 𝑤)
3635anbi1ci 629 . . . . 5 ((𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ (𝑡 = 𝑤𝑡))
3736exbii 1855 . . . 4 (∃𝑡(𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ ∃𝑡(𝑡 = 𝑤𝑡))
38 elequ1 2117 . . . . 5 (𝑡 = 𝑤 → (𝑡𝑤))
3938equsexvw 2013 . . . 4 (∃𝑡(𝑡 = 𝑤𝑡) ↔ 𝑤)
4022, 37, 393bitrri 301 . . 3 (𝑤 ↔ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡))
4121, 40anbi12i 630 . 2 ((𝑤 ≠ ∅ ∧ 𝑤) ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
428, 10, 413bitr4i 306 1 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wne 2940  wrex 3062  c0 4237  {csn 4541   × cxp 5549  ran crn 5552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562
This theorem is referenced by:  dfac5lem5  9741
  Copyright terms: Public domain W3C validator