Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 38765
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u π‘ˆ = (lubβ€˜πΎ)
polval2.o βŠ₯ = (ocβ€˜πΎ)
polval2.a 𝐴 = (Atomsβ€˜πΎ)
polval2.m 𝑀 = (pmapβ€˜πΎ)
polval2.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = (π‘€β€˜( βŠ₯ β€˜(π‘ˆβ€˜π‘‹))))

Proof of Theorem polval2N
Dummy variables π‘₯ 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 βŠ₯ = (ocβ€˜πΎ)
2 polval2.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 polval2.m . . 3 𝑀 = (pmapβ€˜πΎ)
4 polval2.p . . 3 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
51, 2, 3, 4polvalN 38764 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (π‘€β€˜( βŠ₯ β€˜π‘))))
6 hlop 38220 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
76ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝐾 ∈ OP)
8 ssel2 3976 . . . . . . 7 ((𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝐴)
98adantll 712 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝐴)
10 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 2atbase 38147 . . . . . 6 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ (Baseβ€˜πΎ))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
1310, 1opoccl 38052 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ))
147, 12, 13syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ))
1514ralrimiva 3146 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ βˆ€π‘ ∈ 𝑋 ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ))
16 eqid 2732 . . . 4 (glbβ€˜πΎ) = (glbβ€˜πΎ)
1710, 16, 2, 3pmapglb2xN 38631 . . 3 ((𝐾 ∈ HL ∧ βˆ€π‘ ∈ 𝑋 ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ)) β†’ (π‘€β€˜((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)})) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (π‘€β€˜( βŠ₯ β€˜π‘))))
1815, 17syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘€β€˜((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)})) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (π‘€β€˜( βŠ₯ β€˜π‘))))
19 polval2.u . . . . . 6 π‘ˆ = (lubβ€˜πΎ)
2010, 19, 16, 1glbconxN 38237 . . . . 5 ((𝐾 ∈ HL ∧ βˆ€π‘ ∈ 𝑋 ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ)) β†’ ((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)}) = ( βŠ₯ β€˜(π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))})))
2115, 20syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)}) = ( βŠ₯ β€˜(π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))})))
2210, 1opococ 38053 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) = 𝑝)
237, 12, 22syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) = 𝑝)
2423eqeq2d 2743 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ (π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) ↔ π‘₯ = 𝑝))
2524rexbidva 3176 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) ↔ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝))
2625abbidv 2801 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))} = {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝})
27 df-rex 3071 . . . . . . . . . 10 (βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝 ↔ βˆƒπ‘(𝑝 ∈ 𝑋 ∧ π‘₯ = 𝑝))
28 equcom 2021 . . . . . . . . . . . 12 (π‘₯ = 𝑝 ↔ 𝑝 = π‘₯)
2928anbi1ci 626 . . . . . . . . . . 11 ((𝑝 ∈ 𝑋 ∧ π‘₯ = 𝑝) ↔ (𝑝 = π‘₯ ∧ 𝑝 ∈ 𝑋))
3029exbii 1850 . . . . . . . . . 10 (βˆƒπ‘(𝑝 ∈ 𝑋 ∧ π‘₯ = 𝑝) ↔ βˆƒπ‘(𝑝 = π‘₯ ∧ 𝑝 ∈ 𝑋))
31 eleq1w 2816 . . . . . . . . . . 11 (𝑝 = π‘₯ β†’ (𝑝 ∈ 𝑋 ↔ π‘₯ ∈ 𝑋))
3231equsexvw 2008 . . . . . . . . . 10 (βˆƒπ‘(𝑝 = π‘₯ ∧ 𝑝 ∈ 𝑋) ↔ π‘₯ ∈ 𝑋)
3327, 30, 323bitri 296 . . . . . . . . 9 (βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝 ↔ π‘₯ ∈ 𝑋)
3433abbii 2802 . . . . . . . 8 {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝} = {π‘₯ ∣ π‘₯ ∈ 𝑋}
35 abid2 2871 . . . . . . . 8 {π‘₯ ∣ π‘₯ ∈ 𝑋} = 𝑋
3634, 35eqtri 2760 . . . . . . 7 {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝} = 𝑋
3726, 36eqtrdi 2788 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))} = 𝑋)
3837fveq2d 6892 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))}) = (π‘ˆβ€˜π‘‹))
3938fveq2d 6892 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜(π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))})) = ( βŠ₯ β€˜(π‘ˆβ€˜π‘‹)))
4021, 39eqtrd 2772 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)}) = ( βŠ₯ β€˜(π‘ˆβ€˜π‘‹)))
4140fveq2d 6892 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘€β€˜((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)})) = (π‘€β€˜( βŠ₯ β€˜(π‘ˆβ€˜π‘‹))))
425, 18, 413eqtr2d 2778 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = (π‘€β€˜( βŠ₯ β€˜(π‘ˆβ€˜π‘‹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3946   βŠ† wss 3947  βˆ© ciin 4997  β€˜cfv 6540  Basecbs 17140  occoc 17201  lubclub 18258  glbcglb 18259  OPcops 38030  Atomscatm 38121  HLchlt 38208  pmapcpmap 38356  βŠ₯𝑃cpolN 38761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-ats 38125  df-hlat 38209  df-pmap 38363  df-polarityN 38762
This theorem is referenced by:  polsubN  38766  pol1N  38769  polpmapN  38771  2polvalN  38773  3polN  38775  poldmj1N  38787  pnonsingN  38792  ispsubcl2N  38806  polsubclN  38811  poml4N  38812
  Copyright terms: Public domain W3C validator