Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 37847
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u 𝑈 = (lub‘𝐾)
polval2.o = (oc‘𝐾)
polval2.a 𝐴 = (Atoms‘𝐾)
polval2.m 𝑀 = (pmap‘𝐾)
polval2.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))

Proof of Theorem polval2N
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 = (oc‘𝐾)
2 polval2.a . . 3 𝐴 = (Atoms‘𝐾)
3 polval2.m . . 3 𝑀 = (pmap‘𝐾)
4 polval2.p . . 3 𝑃 = (⊥𝑃𝐾)
51, 2, 3, 4polvalN 37846 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
6 hlop 37303 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
76ad2antrr 722 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ OP)
8 ssel2 3912 . . . . . . 7 ((𝑋𝐴𝑝𝑋) → 𝑝𝐴)
98adantll 710 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝𝐴)
10 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 2atbase 37230 . . . . . 6 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝 ∈ (Base‘𝐾))
1310, 1opoccl 37135 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( 𝑝) ∈ (Base‘𝐾))
147, 12, 13syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( 𝑝) ∈ (Base‘𝐾))
1514ralrimiva 3107 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾))
16 eqid 2738 . . . 4 (glb‘𝐾) = (glb‘𝐾)
1710, 16, 2, 3pmapglb2xN 37713 . . 3 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
1815, 17syldan 590 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
19 polval2.u . . . . . 6 𝑈 = (lub‘𝐾)
2010, 19, 16, 1glbconxN 37319 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2115, 20syldan 590 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2210, 1opococ 37136 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( ‘( 𝑝)) = 𝑝)
237, 12, 22syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( ‘( 𝑝)) = 𝑝)
2423eqeq2d 2749 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → (𝑥 = ( ‘( 𝑝)) ↔ 𝑥 = 𝑝))
2524rexbidva 3224 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (∃𝑝𝑋 𝑥 = ( ‘( 𝑝)) ↔ ∃𝑝𝑋 𝑥 = 𝑝))
2625abbidv 2808 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝})
27 df-rex 3069 . . . . . . . . . 10 (∃𝑝𝑋 𝑥 = 𝑝 ↔ ∃𝑝(𝑝𝑋𝑥 = 𝑝))
28 equcom 2022 . . . . . . . . . . . 12 (𝑥 = 𝑝𝑝 = 𝑥)
2928anbi1ci 625 . . . . . . . . . . 11 ((𝑝𝑋𝑥 = 𝑝) ↔ (𝑝 = 𝑥𝑝𝑋))
3029exbii 1851 . . . . . . . . . 10 (∃𝑝(𝑝𝑋𝑥 = 𝑝) ↔ ∃𝑝(𝑝 = 𝑥𝑝𝑋))
31 eleq1w 2821 . . . . . . . . . . 11 (𝑝 = 𝑥 → (𝑝𝑋𝑥𝑋))
3231equsexvw 2009 . . . . . . . . . 10 (∃𝑝(𝑝 = 𝑥𝑝𝑋) ↔ 𝑥𝑋)
3327, 30, 323bitri 296 . . . . . . . . 9 (∃𝑝𝑋 𝑥 = 𝑝𝑥𝑋)
3433abbii 2809 . . . . . . . 8 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = {𝑥𝑥𝑋}
35 abid2 2881 . . . . . . . 8 {𝑥𝑥𝑋} = 𝑋
3634, 35eqtri 2766 . . . . . . 7 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = 𝑋
3726, 36eqtrdi 2795 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = 𝑋)
3837fveq2d 6760 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))}) = (𝑈𝑋))
3938fveq2d 6760 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})) = ( ‘(𝑈𝑋)))
4021, 39eqtrd 2778 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈𝑋)))
4140fveq2d 6760 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝑀‘( ‘(𝑈𝑋))))
425, 18, 413eqtr2d 2784 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  cin 3882  wss 3883   ciin 4922  cfv 6418  Basecbs 16840  occoc 16896  lubclub 17942  glbcglb 17943  OPcops 37113  Atomscatm 37204  HLchlt 37291  pmapcpmap 37438  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-undef 8060  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-ats 37208  df-hlat 37292  df-pmap 37445  df-polarityN 37844
This theorem is referenced by:  polsubN  37848  pol1N  37851  polpmapN  37853  2polvalN  37855  3polN  37857  poldmj1N  37869  pnonsingN  37874  ispsubcl2N  37888  polsubclN  37893  poml4N  37894
  Copyright terms: Public domain W3C validator