Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 39907
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u 𝑈 = (lub‘𝐾)
polval2.o = (oc‘𝐾)
polval2.a 𝐴 = (Atoms‘𝐾)
polval2.m 𝑀 = (pmap‘𝐾)
polval2.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))

Proof of Theorem polval2N
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 = (oc‘𝐾)
2 polval2.a . . 3 𝐴 = (Atoms‘𝐾)
3 polval2.m . . 3 𝑀 = (pmap‘𝐾)
4 polval2.p . . 3 𝑃 = (⊥𝑃𝐾)
51, 2, 3, 4polvalN 39906 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
6 hlop 39362 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
76ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ OP)
8 ssel2 3944 . . . . . . 7 ((𝑋𝐴𝑝𝑋) → 𝑝𝐴)
98adantll 714 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝𝐴)
10 eqid 2730 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 2atbase 39289 . . . . . 6 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝 ∈ (Base‘𝐾))
1310, 1opoccl 39194 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( 𝑝) ∈ (Base‘𝐾))
147, 12, 13syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( 𝑝) ∈ (Base‘𝐾))
1514ralrimiva 3126 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾))
16 eqid 2730 . . . 4 (glb‘𝐾) = (glb‘𝐾)
1710, 16, 2, 3pmapglb2xN 39773 . . 3 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
1815, 17syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
19 polval2.u . . . . . 6 𝑈 = (lub‘𝐾)
2010, 19, 16, 1glbconxN 39379 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2115, 20syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2210, 1opococ 39195 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( ‘( 𝑝)) = 𝑝)
237, 12, 22syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( ‘( 𝑝)) = 𝑝)
2423eqeq2d 2741 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → (𝑥 = ( ‘( 𝑝)) ↔ 𝑥 = 𝑝))
2524rexbidva 3156 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (∃𝑝𝑋 𝑥 = ( ‘( 𝑝)) ↔ ∃𝑝𝑋 𝑥 = 𝑝))
2625abbidv 2796 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝})
27 df-rex 3055 . . . . . . . . . 10 (∃𝑝𝑋 𝑥 = 𝑝 ↔ ∃𝑝(𝑝𝑋𝑥 = 𝑝))
28 equcom 2018 . . . . . . . . . . . 12 (𝑥 = 𝑝𝑝 = 𝑥)
2928anbi1ci 626 . . . . . . . . . . 11 ((𝑝𝑋𝑥 = 𝑝) ↔ (𝑝 = 𝑥𝑝𝑋))
3029exbii 1848 . . . . . . . . . 10 (∃𝑝(𝑝𝑋𝑥 = 𝑝) ↔ ∃𝑝(𝑝 = 𝑥𝑝𝑋))
31 eleq1w 2812 . . . . . . . . . . 11 (𝑝 = 𝑥 → (𝑝𝑋𝑥𝑋))
3231equsexvw 2005 . . . . . . . . . 10 (∃𝑝(𝑝 = 𝑥𝑝𝑋) ↔ 𝑥𝑋)
3327, 30, 323bitri 297 . . . . . . . . 9 (∃𝑝𝑋 𝑥 = 𝑝𝑥𝑋)
3433abbii 2797 . . . . . . . 8 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = {𝑥𝑥𝑋}
35 abid2 2866 . . . . . . . 8 {𝑥𝑥𝑋} = 𝑋
3634, 35eqtri 2753 . . . . . . 7 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = 𝑋
3726, 36eqtrdi 2781 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = 𝑋)
3837fveq2d 6865 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))}) = (𝑈𝑋))
3938fveq2d 6865 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})) = ( ‘(𝑈𝑋)))
4021, 39eqtrd 2765 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈𝑋)))
4140fveq2d 6865 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝑀‘( ‘(𝑈𝑋))))
425, 18, 413eqtr2d 2771 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wrex 3054  cin 3916  wss 3917   ciin 4959  cfv 6514  Basecbs 17186  occoc 17235  lubclub 18277  glbcglb 18278  OPcops 39172  Atomscatm 39263  HLchlt 39350  pmapcpmap 39498  𝑃cpolN 39903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-ats 39267  df-hlat 39351  df-pmap 39505  df-polarityN 39904
This theorem is referenced by:  polsubN  39908  pol1N  39911  polpmapN  39913  2polvalN  39915  3polN  39917  poldmj1N  39929  pnonsingN  39934  ispsubcl2N  39948  polsubclN  39953  poml4N  39954
  Copyright terms: Public domain W3C validator