Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 39081
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u π‘ˆ = (lubβ€˜πΎ)
polval2.o βŠ₯ = (ocβ€˜πΎ)
polval2.a 𝐴 = (Atomsβ€˜πΎ)
polval2.m 𝑀 = (pmapβ€˜πΎ)
polval2.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = (π‘€β€˜( βŠ₯ β€˜(π‘ˆβ€˜π‘‹))))

Proof of Theorem polval2N
Dummy variables π‘₯ 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 βŠ₯ = (ocβ€˜πΎ)
2 polval2.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 polval2.m . . 3 𝑀 = (pmapβ€˜πΎ)
4 polval2.p . . 3 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
51, 2, 3, 4polvalN 39080 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (π‘€β€˜( βŠ₯ β€˜π‘))))
6 hlop 38536 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
76ad2antrr 723 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝐾 ∈ OP)
8 ssel2 3977 . . . . . . 7 ((𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝐴)
98adantll 711 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝐴)
10 eqid 2731 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 2atbase 38463 . . . . . 6 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ (Baseβ€˜πΎ))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
1310, 1opoccl 38368 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ))
147, 12, 13syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ))
1514ralrimiva 3145 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ βˆ€π‘ ∈ 𝑋 ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ))
16 eqid 2731 . . . 4 (glbβ€˜πΎ) = (glbβ€˜πΎ)
1710, 16, 2, 3pmapglb2xN 38947 . . 3 ((𝐾 ∈ HL ∧ βˆ€π‘ ∈ 𝑋 ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ)) β†’ (π‘€β€˜((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)})) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (π‘€β€˜( βŠ₯ β€˜π‘))))
1815, 17syldan 590 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘€β€˜((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)})) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (π‘€β€˜( βŠ₯ β€˜π‘))))
19 polval2.u . . . . . 6 π‘ˆ = (lubβ€˜πΎ)
2010, 19, 16, 1glbconxN 38553 . . . . 5 ((𝐾 ∈ HL ∧ βˆ€π‘ ∈ 𝑋 ( βŠ₯ β€˜π‘) ∈ (Baseβ€˜πΎ)) β†’ ((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)}) = ( βŠ₯ β€˜(π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))})))
2115, 20syldan 590 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)}) = ( βŠ₯ β€˜(π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))})))
2210, 1opococ 38369 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) = 𝑝)
237, 12, 22syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) = 𝑝)
2423eqeq2d 2742 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ (π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) ↔ π‘₯ = 𝑝))
2524rexbidva 3175 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘)) ↔ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝))
2625abbidv 2800 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))} = {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝})
27 df-rex 3070 . . . . . . . . . 10 (βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝 ↔ βˆƒπ‘(𝑝 ∈ 𝑋 ∧ π‘₯ = 𝑝))
28 equcom 2020 . . . . . . . . . . . 12 (π‘₯ = 𝑝 ↔ 𝑝 = π‘₯)
2928anbi1ci 625 . . . . . . . . . . 11 ((𝑝 ∈ 𝑋 ∧ π‘₯ = 𝑝) ↔ (𝑝 = π‘₯ ∧ 𝑝 ∈ 𝑋))
3029exbii 1849 . . . . . . . . . 10 (βˆƒπ‘(𝑝 ∈ 𝑋 ∧ π‘₯ = 𝑝) ↔ βˆƒπ‘(𝑝 = π‘₯ ∧ 𝑝 ∈ 𝑋))
31 eleq1w 2815 . . . . . . . . . . 11 (𝑝 = π‘₯ β†’ (𝑝 ∈ 𝑋 ↔ π‘₯ ∈ 𝑋))
3231equsexvw 2007 . . . . . . . . . 10 (βˆƒπ‘(𝑝 = π‘₯ ∧ 𝑝 ∈ 𝑋) ↔ π‘₯ ∈ 𝑋)
3327, 30, 323bitri 297 . . . . . . . . 9 (βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝 ↔ π‘₯ ∈ 𝑋)
3433abbii 2801 . . . . . . . 8 {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝} = {π‘₯ ∣ π‘₯ ∈ 𝑋}
35 abid2 2870 . . . . . . . 8 {π‘₯ ∣ π‘₯ ∈ 𝑋} = 𝑋
3634, 35eqtri 2759 . . . . . . 7 {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = 𝑝} = 𝑋
3726, 36eqtrdi 2787 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ {π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))} = 𝑋)
3837fveq2d 6895 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))}) = (π‘ˆβ€˜π‘‹))
3938fveq2d 6895 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜(π‘ˆβ€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜( βŠ₯ β€˜π‘))})) = ( βŠ₯ β€˜(π‘ˆβ€˜π‘‹)))
4021, 39eqtrd 2771 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)}) = ( βŠ₯ β€˜(π‘ˆβ€˜π‘‹)))
4140fveq2d 6895 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘€β€˜((glbβ€˜πΎ)β€˜{π‘₯ ∣ βˆƒπ‘ ∈ 𝑋 π‘₯ = ( βŠ₯ β€˜π‘)})) = (π‘€β€˜( βŠ₯ β€˜(π‘ˆβ€˜π‘‹))))
425, 18, 413eqtr2d 2777 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = (π‘€β€˜( βŠ₯ β€˜(π‘ˆβ€˜π‘‹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  {cab 2708  βˆ€wral 3060  βˆƒwrex 3069   ∩ cin 3947   βŠ† wss 3948  βˆ© ciin 4998  β€˜cfv 6543  Basecbs 17149  occoc 17210  lubclub 18267  glbcglb 18268  OPcops 38346  Atomscatm 38437  HLchlt 38524  pmapcpmap 38672  βŠ₯𝑃cpolN 39077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18253  df-poset 18271  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-ats 38441  df-hlat 38525  df-pmap 38679  df-polarityN 39078
This theorem is referenced by:  polsubN  39082  pol1N  39085  polpmapN  39087  2polvalN  39089  3polN  39091  poldmj1N  39103  pnonsingN  39108  ispsubcl2N  39122  polsubclN  39127  poml4N  39128
  Copyright terms: Public domain W3C validator