Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 39873
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u 𝑈 = (lub‘𝐾)
polval2.o = (oc‘𝐾)
polval2.a 𝐴 = (Atoms‘𝐾)
polval2.m 𝑀 = (pmap‘𝐾)
polval2.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))

Proof of Theorem polval2N
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 = (oc‘𝐾)
2 polval2.a . . 3 𝐴 = (Atoms‘𝐾)
3 polval2.m . . 3 𝑀 = (pmap‘𝐾)
4 polval2.p . . 3 𝑃 = (⊥𝑃𝐾)
51, 2, 3, 4polvalN 39872 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
6 hlop 39328 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
76ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ OP)
8 ssel2 3938 . . . . . . 7 ((𝑋𝐴𝑝𝑋) → 𝑝𝐴)
98adantll 714 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝𝐴)
10 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 2atbase 39255 . . . . . 6 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝 ∈ (Base‘𝐾))
1310, 1opoccl 39160 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( 𝑝) ∈ (Base‘𝐾))
147, 12, 13syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( 𝑝) ∈ (Base‘𝐾))
1514ralrimiva 3125 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾))
16 eqid 2729 . . . 4 (glb‘𝐾) = (glb‘𝐾)
1710, 16, 2, 3pmapglb2xN 39739 . . 3 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
1815, 17syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
19 polval2.u . . . . . 6 𝑈 = (lub‘𝐾)
2010, 19, 16, 1glbconxN 39345 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2115, 20syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2210, 1opococ 39161 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( ‘( 𝑝)) = 𝑝)
237, 12, 22syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( ‘( 𝑝)) = 𝑝)
2423eqeq2d 2740 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → (𝑥 = ( ‘( 𝑝)) ↔ 𝑥 = 𝑝))
2524rexbidva 3155 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (∃𝑝𝑋 𝑥 = ( ‘( 𝑝)) ↔ ∃𝑝𝑋 𝑥 = 𝑝))
2625abbidv 2795 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝})
27 df-rex 3054 . . . . . . . . . 10 (∃𝑝𝑋 𝑥 = 𝑝 ↔ ∃𝑝(𝑝𝑋𝑥 = 𝑝))
28 equcom 2018 . . . . . . . . . . . 12 (𝑥 = 𝑝𝑝 = 𝑥)
2928anbi1ci 626 . . . . . . . . . . 11 ((𝑝𝑋𝑥 = 𝑝) ↔ (𝑝 = 𝑥𝑝𝑋))
3029exbii 1848 . . . . . . . . . 10 (∃𝑝(𝑝𝑋𝑥 = 𝑝) ↔ ∃𝑝(𝑝 = 𝑥𝑝𝑋))
31 eleq1w 2811 . . . . . . . . . . 11 (𝑝 = 𝑥 → (𝑝𝑋𝑥𝑋))
3231equsexvw 2005 . . . . . . . . . 10 (∃𝑝(𝑝 = 𝑥𝑝𝑋) ↔ 𝑥𝑋)
3327, 30, 323bitri 297 . . . . . . . . 9 (∃𝑝𝑋 𝑥 = 𝑝𝑥𝑋)
3433abbii 2796 . . . . . . . 8 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = {𝑥𝑥𝑋}
35 abid2 2865 . . . . . . . 8 {𝑥𝑥𝑋} = 𝑋
3634, 35eqtri 2752 . . . . . . 7 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = 𝑋
3726, 36eqtrdi 2780 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = 𝑋)
3837fveq2d 6844 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))}) = (𝑈𝑋))
3938fveq2d 6844 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})) = ( ‘(𝑈𝑋)))
4021, 39eqtrd 2764 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈𝑋)))
4140fveq2d 6844 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝑀‘( ‘(𝑈𝑋))))
425, 18, 413eqtr2d 2770 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3910  wss 3911   ciin 4952  cfv 6499  Basecbs 17155  occoc 17204  lubclub 18246  glbcglb 18247  OPcops 39138  Atomscatm 39229  HLchlt 39316  pmapcpmap 39464  𝑃cpolN 39869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-ats 39233  df-hlat 39317  df-pmap 39471  df-polarityN 39870
This theorem is referenced by:  polsubN  39874  pol1N  39877  polpmapN  39879  2polvalN  39881  3polN  39883  poldmj1N  39895  pnonsingN  39900  ispsubcl2N  39914  polsubclN  39919  poml4N  39920
  Copyright terms: Public domain W3C validator