Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 39953
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u 𝑈 = (lub‘𝐾)
polval2.o = (oc‘𝐾)
polval2.a 𝐴 = (Atoms‘𝐾)
polval2.m 𝑀 = (pmap‘𝐾)
polval2.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))

Proof of Theorem polval2N
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 = (oc‘𝐾)
2 polval2.a . . 3 𝐴 = (Atoms‘𝐾)
3 polval2.m . . 3 𝑀 = (pmap‘𝐾)
4 polval2.p . . 3 𝑃 = (⊥𝑃𝐾)
51, 2, 3, 4polvalN 39952 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
6 hlop 39409 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
76ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ OP)
8 ssel2 3924 . . . . . . 7 ((𝑋𝐴𝑝𝑋) → 𝑝𝐴)
98adantll 714 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝𝐴)
10 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 2atbase 39336 . . . . . 6 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝 ∈ (Base‘𝐾))
1310, 1opoccl 39241 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( 𝑝) ∈ (Base‘𝐾))
147, 12, 13syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( 𝑝) ∈ (Base‘𝐾))
1514ralrimiva 3124 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾))
16 eqid 2731 . . . 4 (glb‘𝐾) = (glb‘𝐾)
1710, 16, 2, 3pmapglb2xN 39819 . . 3 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
1815, 17syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
19 polval2.u . . . . . 6 𝑈 = (lub‘𝐾)
2010, 19, 16, 1glbconxN 39425 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2115, 20syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2210, 1opococ 39242 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( ‘( 𝑝)) = 𝑝)
237, 12, 22syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( ‘( 𝑝)) = 𝑝)
2423eqeq2d 2742 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → (𝑥 = ( ‘( 𝑝)) ↔ 𝑥 = 𝑝))
2524rexbidva 3154 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (∃𝑝𝑋 𝑥 = ( ‘( 𝑝)) ↔ ∃𝑝𝑋 𝑥 = 𝑝))
2625abbidv 2797 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝})
27 df-rex 3057 . . . . . . . . . 10 (∃𝑝𝑋 𝑥 = 𝑝 ↔ ∃𝑝(𝑝𝑋𝑥 = 𝑝))
28 equcom 2019 . . . . . . . . . . . 12 (𝑥 = 𝑝𝑝 = 𝑥)
2928anbi1ci 626 . . . . . . . . . . 11 ((𝑝𝑋𝑥 = 𝑝) ↔ (𝑝 = 𝑥𝑝𝑋))
3029exbii 1849 . . . . . . . . . 10 (∃𝑝(𝑝𝑋𝑥 = 𝑝) ↔ ∃𝑝(𝑝 = 𝑥𝑝𝑋))
31 eleq1w 2814 . . . . . . . . . . 11 (𝑝 = 𝑥 → (𝑝𝑋𝑥𝑋))
3231equsexvw 2006 . . . . . . . . . 10 (∃𝑝(𝑝 = 𝑥𝑝𝑋) ↔ 𝑥𝑋)
3327, 30, 323bitri 297 . . . . . . . . 9 (∃𝑝𝑋 𝑥 = 𝑝𝑥𝑋)
3433abbii 2798 . . . . . . . 8 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = {𝑥𝑥𝑋}
35 abid2 2868 . . . . . . . 8 {𝑥𝑥𝑋} = 𝑋
3634, 35eqtri 2754 . . . . . . 7 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = 𝑋
3726, 36eqtrdi 2782 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = 𝑋)
3837fveq2d 6826 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))}) = (𝑈𝑋))
3938fveq2d 6826 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})) = ( ‘(𝑈𝑋)))
4021, 39eqtrd 2766 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈𝑋)))
4140fveq2d 6826 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝑀‘( ‘(𝑈𝑋))))
425, 18, 413eqtr2d 2772 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  cin 3896  wss 3897   ciin 4940  cfv 6481  Basecbs 17120  occoc 17169  lubclub 18215  glbcglb 18216  OPcops 39219  Atomscatm 39310  HLchlt 39397  pmapcpmap 39544  𝑃cpolN 39949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-ats 39314  df-hlat 39398  df-pmap 39551  df-polarityN 39950
This theorem is referenced by:  polsubN  39954  pol1N  39957  polpmapN  39959  2polvalN  39961  3polN  39963  poldmj1N  39975  pnonsingN  39980  ispsubcl2N  39994  polsubclN  39999  poml4N  40000
  Copyright terms: Public domain W3C validator