| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnidres | Structured version Visualization version GIF version | ||
| Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| Ref | Expression |
|---|---|
| rnxrnidres | ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrnres 38392 | . 2 ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦)} | |
| 2 | ideqg 5818 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑢 I 𝑦 ↔ 𝑢 = 𝑦)) | |
| 3 | 2 | elv 3455 | . . . . 5 ⊢ (𝑢 I 𝑦 ↔ 𝑢 = 𝑦) |
| 4 | 3 | anbi1ci 626 | . . . 4 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢 I 𝑦) ↔ (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)) |
| 5 | 4 | rexbii 3077 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)) |
| 6 | 5 | opabbii 5177 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
| 7 | 1, 6 | eqtri 2753 | 1 ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wrex 3054 Vcvv 3450 class class class wbr 5110 {copab 5172 I cid 5535 ran crn 5642 ↾ cres 5643 ⋉ cxrn 38175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-ec 8676 df-xrn 38360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |