Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrnidres Structured version   Visualization version   GIF version

Theorem rnxrnidres 38359
Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
Assertion
Ref Expression
rnxrnidres ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦

Proof of Theorem rnxrnidres
StepHypRef Expression
1 rnxrnres 38357 . 2 ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 I 𝑦)}
2 ideqg 5876 . . . . . 6 (𝑦 ∈ V → (𝑢 I 𝑦𝑢 = 𝑦))
32elv 3493 . . . . 5 (𝑢 I 𝑦𝑢 = 𝑦)
43anbi1ci 625 . . . 4 ((𝑢𝑅𝑥𝑢 I 𝑦) ↔ (𝑢 = 𝑦𝑢𝑅𝑥))
54rexbii 3100 . . 3 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢 I 𝑦) ↔ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥))
65opabbii 5233 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 I 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
71, 6eqtri 2768 1 ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wrex 3076  Vcvv 3488   class class class wbr 5166  {copab 5228   I cid 5592  ran crn 5701  cres 5702  cxrn 38136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fo 6581  df-fv 6583  df-1st 8032  df-2nd 8033  df-ec 8767  df-xrn 38329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator