| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnidres | Structured version Visualization version GIF version | ||
| Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| Ref | Expression |
|---|---|
| rnxrnidres | ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrnres 38385 | . 2 ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦)} | |
| 2 | ideqg 5815 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑢 I 𝑦 ↔ 𝑢 = 𝑦)) | |
| 3 | 2 | elv 3452 | . . . . 5 ⊢ (𝑢 I 𝑦 ↔ 𝑢 = 𝑦) |
| 4 | 3 | anbi1ci 626 | . . . 4 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢 I 𝑦) ↔ (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)) |
| 5 | 4 | rexbii 3076 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)) |
| 6 | 5 | opabbii 5174 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
| 7 | 1, 6 | eqtri 2752 | 1 ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 {copab 5169 I cid 5532 ran crn 5639 ↾ cres 5640 ⋉ cxrn 38168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-ec 8673 df-xrn 38353 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |