Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnidres | Structured version Visualization version GIF version |
Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
Ref | Expression |
---|---|
rnxrnidres | ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxrnres 36525 | . 2 ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦)} | |
2 | ideqg 5760 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑢 I 𝑦 ↔ 𝑢 = 𝑦)) | |
3 | 2 | elv 3438 | . . . . 5 ⊢ (𝑢 I 𝑦 ↔ 𝑢 = 𝑦) |
4 | 3 | anbi1ci 626 | . . . 4 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢 I 𝑦) ↔ (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)) |
5 | 4 | rexbii 3181 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)) |
6 | 5 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢 I 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
7 | 1, 6 | eqtri 2766 | 1 ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 {copab 5136 I cid 5488 ran crn 5590 ↾ cres 5591 ⋉ cxrn 36332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-ec 8500 df-xrn 36501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |