MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem1 Structured version   Visualization version   GIF version

Theorem axacndlem1 10221
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axacndlem1 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))

Proof of Theorem axacndlem1
StepHypRef Expression
1 nfae 2432 . . 3 𝑦𝑥 𝑥 = 𝑦
2 nfae 2432 . . . 4 𝑧𝑥 𝑥 = 𝑦
3 simpl 486 . . . . . 6 ((𝑦𝑧𝑧𝑤) → 𝑦𝑧)
43alimi 1819 . . . . 5 (∀𝑥(𝑦𝑧𝑧𝑤) → ∀𝑥 𝑦𝑧)
5 nd1 10201 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
65pm2.21d 121 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
74, 6syl5 34 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
82, 7alrimi 2211 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
91, 8alrimi 2211 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
10919.8ad 2179 1 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2371  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-reg 9208
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-sn 4542  df-pr 4544
This theorem is referenced by:  axacndlem4  10224  axacndlem5  10225
  Copyright terms: Public domain W3C validator