MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem1 Structured version   Visualization version   GIF version

Theorem axacndlem1 10628
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2365. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axacndlem1 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))

Proof of Theorem axacndlem1
StepHypRef Expression
1 nfae 2426 . . 3 𝑦𝑥 𝑥 = 𝑦
2 nfae 2426 . . . 4 𝑧𝑥 𝑥 = 𝑦
3 simpl 481 . . . . . 6 ((𝑦𝑧𝑧𝑤) → 𝑦𝑧)
43alimi 1805 . . . . 5 (∀𝑥(𝑦𝑧𝑧𝑤) → ∀𝑥 𝑦𝑧)
5 nd1 10608 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
65pm2.21d 121 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
74, 6syl5 34 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
82, 7alrimi 2201 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
91, 8alrimi 2201 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
10919.8ad 2170 1 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-13 2365  ax-ext 2696  ax-sep 5294  ax-pr 5423  ax-reg 9613
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-v 3465  df-un 3945  df-sn 4625  df-pr 4627
This theorem is referenced by:  axacndlem4  10631  axacndlem5  10632
  Copyright terms: Public domain W3C validator