MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem1 Structured version   Visualization version   GIF version

Theorem axacndlem1 10347
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axacndlem1 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))

Proof of Theorem axacndlem1
StepHypRef Expression
1 nfae 2434 . . 3 𝑦𝑥 𝑥 = 𝑦
2 nfae 2434 . . . 4 𝑧𝑥 𝑥 = 𝑦
3 simpl 482 . . . . . 6 ((𝑦𝑧𝑧𝑤) → 𝑦𝑧)
43alimi 1817 . . . . 5 (∀𝑥(𝑦𝑧𝑧𝑤) → ∀𝑥 𝑦𝑧)
5 nd1 10327 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
65pm2.21d 121 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
74, 6syl5 34 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
82, 7alrimi 2209 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
91, 8alrimi 2209 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
10919.8ad 2178 1 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-13 2373  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-reg 9312
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-sn 4567  df-pr 4569
This theorem is referenced by:  axacndlem4  10350  axacndlem5  10351
  Copyright terms: Public domain W3C validator