![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2182. (Contributed by DAW, 13-Feb-2017.) |
Ref | Expression |
---|---|
19.8ad.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 19.8a 2182 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 2ax6e 2479 dfmoeu 2539 copsexgw 5510 domtriomlem 10511 axrepnd 10663 axunndlem1 10664 axunnd 10665 axpownd 10670 axacndlem1 10676 axacndlem2 10677 axacndlem3 10678 axacndlem4 10679 axacndlem5 10680 axacnd 10681 pwfseqlem4a 10730 pwfseqlem4 10731 bnj1189 34985 isbasisrelowllem1 37321 isbasisrelowllem2 37322 gneispace 44096 cpcolld 44227 ovncvrrp 46485 ichreuopeq 47347 |
Copyright terms: Public domain | W3C validator |