![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2175. (Contributed by DAW, 13-Feb-2017.) |
Ref | Expression |
---|---|
19.8ad.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 19.8a 2175 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 2ax6e 2471 dfmoeu 2531 copsexgw 5491 domtriomlem 10437 axrepnd 10589 axunndlem1 10590 axunnd 10591 axpownd 10596 axacndlem1 10602 axacndlem2 10603 axacndlem3 10604 axacndlem4 10605 axacndlem5 10606 axacnd 10607 pwfseqlem4a 10656 pwfseqlem4 10657 bnj1189 34051 isbasisrelowllem1 36284 isbasisrelowllem2 36285 gneispace 42933 cpcolld 43065 ovncvrrp 45328 ichreuopeq 46189 |
Copyright terms: Public domain | W3C validator |