| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2184. (Contributed by DAW, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| 19.8ad.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 19.8a 2184 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2ax6e 2471 dfmoeu 2531 copsexgw 5430 domtriomlem 10333 axrepnd 10485 axunndlem1 10486 axunnd 10487 axpownd 10492 axacndlem1 10498 axacndlem2 10499 axacndlem3 10500 axacndlem4 10501 axacndlem5 10502 axacnd 10503 pwfseqlem4a 10552 pwfseqlem4 10553 bnj1189 35019 isbasisrelowllem1 37395 isbasisrelowllem2 37396 gneispace 44173 cpcolld 44297 ovncvrrp 46608 ichreuopeq 47510 |
| Copyright terms: Public domain | W3C validator |