Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2178. (Contributed by DAW, 13-Feb-2017.) |
Ref | Expression |
---|---|
19.8ad.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 19.8a 2178 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-ex 1787 |
This theorem is referenced by: 2ax6e 2473 dfmoeu 2538 copsexgw 5408 domtriomlem 10199 axrepnd 10351 axunndlem1 10352 axunnd 10353 axpownd 10358 axacndlem1 10364 axacndlem2 10365 axacndlem3 10366 axacndlem4 10367 axacndlem5 10368 axacnd 10369 pwfseqlem4a 10418 pwfseqlem4 10419 bnj1189 32985 isbasisrelowllem1 35522 isbasisrelowllem2 35523 gneispace 41714 cpcolld 41846 ovncvrrp 44073 ichreuopeq 44894 |
Copyright terms: Public domain | W3C validator |