Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2174. (Contributed by DAW, 13-Feb-2017.) |
Ref | Expression |
---|---|
19.8ad.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 19.8a 2174 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 2ax6e 2471 dfmoeu 2536 copsexgw 5404 domtriomlem 10198 axrepnd 10350 axunndlem1 10351 axunnd 10352 axpownd 10357 axacndlem1 10363 axacndlem2 10364 axacndlem3 10365 axacndlem4 10366 axacndlem5 10367 axacnd 10368 pwfseqlem4a 10417 pwfseqlem4 10418 bnj1189 32989 isbasisrelowllem1 35526 isbasisrelowllem2 35527 gneispace 41744 cpcolld 41876 ovncvrrp 44102 ichreuopeq 44925 |
Copyright terms: Public domain | W3C validator |