| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2186. (Contributed by DAW, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| 19.8ad.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 19.8a 2186 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2ax6e 2473 dfmoeu 2533 copsexgw 5433 domtriomlem 10340 axrepnd 10492 axunndlem1 10493 axunnd 10494 axpownd 10499 axacndlem1 10505 axacndlem2 10506 axacndlem3 10507 axacndlem4 10508 axacndlem5 10509 axacnd 10510 pwfseqlem4a 10559 pwfseqlem4 10560 bnj1189 35042 isbasisrelowllem1 37420 isbasisrelowllem2 37421 gneispace 44252 cpcolld 44376 ovncvrrp 46687 ichreuopeq 47598 |
| Copyright terms: Public domain | W3C validator |