| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2182. (Contributed by DAW, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| 19.8ad.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 19.8a 2182 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2ax6e 2469 dfmoeu 2529 copsexgw 5450 domtriomlem 10395 axrepnd 10547 axunndlem1 10548 axunnd 10549 axpownd 10554 axacndlem1 10560 axacndlem2 10561 axacndlem3 10562 axacndlem4 10563 axacndlem5 10564 axacnd 10565 pwfseqlem4a 10614 pwfseqlem4 10615 bnj1189 34999 isbasisrelowllem1 37343 isbasisrelowllem2 37344 gneispace 44123 cpcolld 44247 ovncvrrp 46562 ichreuopeq 47471 |
| Copyright terms: Public domain | W3C validator |