MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8ad Structured version   Visualization version   GIF version

Theorem 19.8ad 2179
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2178. (Contributed by DAW, 13-Feb-2017.)
Hypothesis
Ref Expression
19.8ad.1 (𝜑𝜓)
Assertion
Ref Expression
19.8ad (𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.8ad
StepHypRef Expression
1 19.8ad.1 . 2 (𝜑𝜓)
2 19.8a 2178 . 2 (𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-12 2175
This theorem depends on definitions:  df-bi 206  df-ex 1787
This theorem is referenced by:  2ax6e  2473  dfmoeu  2538  copsexgw  5408  domtriomlem  10199  axrepnd  10351  axunndlem1  10352  axunnd  10353  axpownd  10358  axacndlem1  10364  axacndlem2  10365  axacndlem3  10366  axacndlem4  10367  axacndlem5  10368  axacnd  10369  pwfseqlem4a  10418  pwfseqlem4  10419  bnj1189  32985  isbasisrelowllem1  35522  isbasisrelowllem2  35523  gneispace  41714  cpcolld  41846  ovncvrrp  44073  ichreuopeq  44894
  Copyright terms: Public domain W3C validator