| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2182. (Contributed by DAW, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| 19.8ad.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 19.8a 2182 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2ax6e 2469 dfmoeu 2529 copsexgw 5437 domtriomlem 10355 axrepnd 10507 axunndlem1 10508 axunnd 10509 axpownd 10514 axacndlem1 10520 axacndlem2 10521 axacndlem3 10522 axacndlem4 10523 axacndlem5 10524 axacnd 10525 pwfseqlem4a 10574 pwfseqlem4 10575 bnj1189 34978 isbasisrelowllem1 37331 isbasisrelowllem2 37332 gneispace 44110 cpcolld 44234 ovncvrrp 46549 ichreuopeq 47461 |
| Copyright terms: Public domain | W3C validator |