MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8ad Structured version   Visualization version   GIF version

Theorem 19.8ad 2175
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2174. (Contributed by DAW, 13-Feb-2017.)
Hypothesis
Ref Expression
19.8ad.1 (𝜑𝜓)
Assertion
Ref Expression
19.8ad (𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.8ad
StepHypRef Expression
1 19.8ad.1 . 2 (𝜑𝜓)
2 19.8a 2174 . 2 (𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  2ax6e  2471  dfmoeu  2536  copsexgw  5404  domtriomlem  10198  axrepnd  10350  axunndlem1  10351  axunnd  10352  axpownd  10357  axacndlem1  10363  axacndlem2  10364  axacndlem3  10365  axacndlem4  10366  axacndlem5  10367  axacnd  10368  pwfseqlem4a  10417  pwfseqlem4  10418  bnj1189  32989  isbasisrelowllem1  35526  isbasisrelowllem2  35527  gneispace  41744  cpcolld  41876  ovncvrrp  44102  ichreuopeq  44925
  Copyright terms: Public domain W3C validator