Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2176. (Contributed by DAW, 13-Feb-2017.) |
Ref | Expression |
---|---|
19.8ad.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 19.8a 2176 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 2ax6e 2471 dfmoeu 2536 copsexgw 5398 domtriomlem 10129 axrepnd 10281 axunndlem1 10282 axunnd 10283 axpownd 10288 axacndlem1 10294 axacndlem2 10295 axacndlem3 10296 axacndlem4 10297 axacndlem5 10298 axacnd 10299 pwfseqlem4a 10348 pwfseqlem4 10349 bnj1189 32889 isbasisrelowllem1 35453 isbasisrelowllem2 35454 gneispace 41633 cpcolld 41765 ovncvrrp 43992 ichreuopeq 44813 |
Copyright terms: Public domain | W3C validator |