![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2179. (Contributed by DAW, 13-Feb-2017.) |
Ref | Expression |
---|---|
19.8ad.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 19.8a 2179 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 2ax6e 2474 dfmoeu 2534 copsexgw 5501 domtriomlem 10480 axrepnd 10632 axunndlem1 10633 axunnd 10634 axpownd 10639 axacndlem1 10645 axacndlem2 10646 axacndlem3 10647 axacndlem4 10648 axacndlem5 10649 axacnd 10650 pwfseqlem4a 10699 pwfseqlem4 10700 bnj1189 35002 isbasisrelowllem1 37338 isbasisrelowllem2 37339 gneispace 44124 cpcolld 44254 ovncvrrp 46520 ichreuopeq 47398 |
Copyright terms: Public domain | W3C validator |