MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8ad Structured version   Visualization version   GIF version

Theorem 19.8ad 2185
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2184. (Contributed by DAW, 13-Feb-2017.)
Hypothesis
Ref Expression
19.8ad.1 (𝜑𝜓)
Assertion
Ref Expression
19.8ad (𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.8ad
StepHypRef Expression
1 19.8ad.1 . 2 (𝜑𝜓)
2 19.8a 2184 . 2 (𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  2ax6e  2471  dfmoeu  2531  copsexgw  5430  domtriomlem  10333  axrepnd  10485  axunndlem1  10486  axunnd  10487  axpownd  10492  axacndlem1  10498  axacndlem2  10499  axacndlem3  10500  axacndlem4  10501  axacndlem5  10502  axacnd  10503  pwfseqlem4a  10552  pwfseqlem4  10553  bnj1189  35019  isbasisrelowllem1  37395  isbasisrelowllem2  37396  gneispace  44173  cpcolld  44297  ovncvrrp  46608  ichreuopeq  47510
  Copyright terms: Public domain W3C validator