| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8ad | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2182. (Contributed by DAW, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| 19.8ad.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.8ad | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8ad.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 19.8a 2182 | . 2 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2ax6e 2476 dfmoeu 2536 copsexgw 5470 domtriomlem 10461 axrepnd 10613 axunndlem1 10614 axunnd 10615 axpownd 10620 axacndlem1 10626 axacndlem2 10627 axacndlem3 10628 axacndlem4 10629 axacndlem5 10630 axacnd 10631 pwfseqlem4a 10680 pwfseqlem4 10681 bnj1189 35045 isbasisrelowllem1 37378 isbasisrelowllem2 37379 gneispace 44125 cpcolld 44249 ovncvrrp 46560 ichreuopeq 47454 |
| Copyright terms: Public domain | W3C validator |