![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axacndlem2 | Structured version Visualization version GIF version |
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axacndlem2 | ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2441 | . . 3 ⊢ Ⅎ𝑦∀𝑥 𝑥 = 𝑧 | |
2 | nfae 2441 | . . . 4 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | |
3 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → 𝑧 ∈ 𝑤) | |
4 | 3 | alimi 1809 | . . . . 5 ⊢ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∀𝑥 𝑧 ∈ 𝑤) |
5 | nd1 10656 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑧 ∈ 𝑤) | |
6 | 5 | pm2.21d 121 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑧 ∈ 𝑤 → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
7 | 4, 6 | syl5 34 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
8 | 2, 7 | alrimi 2214 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
9 | 1, 8 | alrimi 2214 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
10 | 9 | 19.8ad 2183 | 1 ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: axacndlem4 10679 axacnd 10681 |
Copyright terms: Public domain | W3C validator |