Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axacndlem2 | Structured version Visualization version GIF version |
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axacndlem2 | ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2433 | . . 3 ⊢ Ⅎ𝑦∀𝑥 𝑥 = 𝑧 | |
2 | nfae 2433 | . . . 4 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | |
3 | simpr 485 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → 𝑧 ∈ 𝑤) | |
4 | 3 | alimi 1814 | . . . . 5 ⊢ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∀𝑥 𝑧 ∈ 𝑤) |
5 | nd1 10343 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑧 ∈ 𝑤) | |
6 | 5 | pm2.21d 121 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑧 ∈ 𝑤 → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
7 | 4, 6 | syl5 34 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
8 | 2, 7 | alrimi 2206 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
9 | 1, 8 | alrimi 2206 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
10 | 9 | 19.8ad 2175 | 1 ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: axacndlem4 10366 axacnd 10368 |
Copyright terms: Public domain | W3C validator |