Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axacndlem2 | Structured version Visualization version GIF version |
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axacndlem2 | ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2432 | . . 3 ⊢ Ⅎ𝑦∀𝑥 𝑥 = 𝑧 | |
2 | nfae 2432 | . . . 4 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | |
3 | simpr 488 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → 𝑧 ∈ 𝑤) | |
4 | 3 | alimi 1819 | . . . . 5 ⊢ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∀𝑥 𝑧 ∈ 𝑤) |
5 | nd1 10201 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑧 ∈ 𝑤) | |
6 | 5 | pm2.21d 121 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑧 ∈ 𝑤 → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
7 | 4, 6 | syl5 34 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
8 | 2, 7 | alrimi 2211 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
9 | 1, 8 | alrimi 2211 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
10 | 9 | 19.8ad 2179 | 1 ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 ∃wex 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2371 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-reg 9208 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-sn 4542 df-pr 4544 |
This theorem is referenced by: axacndlem4 10224 axacnd 10226 |
Copyright terms: Public domain | W3C validator |