MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem2 Structured version   Visualization version   GIF version

Theorem axacndlem2 10625
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2367. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axacndlem2 (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))

Proof of Theorem axacndlem2
StepHypRef Expression
1 nfae 2428 . . 3 𝑦𝑥 𝑥 = 𝑧
2 nfae 2428 . . . 4 𝑧𝑥 𝑥 = 𝑧
3 simpr 484 . . . . . 6 ((𝑦𝑧𝑧𝑤) → 𝑧𝑤)
43alimi 1806 . . . . 5 (∀𝑥(𝑦𝑧𝑧𝑤) → ∀𝑥 𝑧𝑤)
5 nd1 10604 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑧𝑤)
65pm2.21d 121 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑧𝑤 → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
74, 6syl5 34 . . . 4 (∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
82, 7alrimi 2202 . . 3 (∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
91, 8alrimi 2202 . 2 (∀𝑥 𝑥 = 𝑧 → ∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
10919.8ad 2171 1 (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2367  ax-ext 2699  ax-sep 5293  ax-pr 5423  ax-reg 9609
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-v 3472  df-un 3950  df-sn 4625  df-pr 4627
This theorem is referenced by:  axacndlem4  10627  axacnd  10629
  Copyright terms: Public domain W3C validator