MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem2 Structured version   Visualization version   GIF version

Theorem axacndlem2 9822
Description: Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axacndlem2 (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))

Proof of Theorem axacndlem2
StepHypRef Expression
1 nfae 2369 . . 3 𝑦𝑥 𝑥 = 𝑧
2 nfae 2369 . . . 4 𝑧𝑥 𝑥 = 𝑧
3 simpr 477 . . . . . 6 ((𝑦𝑧𝑧𝑤) → 𝑧𝑤)
43alimi 1774 . . . . 5 (∀𝑥(𝑦𝑧𝑧𝑤) → ∀𝑥 𝑧𝑤)
5 nd1 9801 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑧𝑤)
65pm2.21d 119 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑧𝑤 → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
74, 6syl5 34 . . . 4 (∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
82, 7alrimi 2143 . . 3 (∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
91, 8alrimi 2143 . 2 (∀𝑥 𝑥 = 𝑧 → ∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
10919.8ad 2110 1 (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1505  wex 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pr 5180  ax-reg 8845
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-v 3411  df-dif 3826  df-un 3828  df-nul 4173  df-sn 4436  df-pr 4438
This theorem is referenced by:  axacndlem4  9824  axacnd  9826
  Copyright terms: Public domain W3C validator