Step | Hyp | Ref
| Expression |
1 | | isbasisg 21647 |
. . . 4
⊢ (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
2 | 1 | ibi 270 |
. . 3
⊢ (𝐵 ∈ TopBases →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
3 | | ineq1 4109 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 ∩ 𝑦) = (𝐶 ∩ 𝑦)) |
4 | 3 | pweqd 4513 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → 𝒫 (𝑥 ∩ 𝑦) = 𝒫 (𝐶 ∩ 𝑦)) |
5 | 4 | ineq2d 4117 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦))) |
6 | 5 | unieqd 4812 |
. . . . 5
⊢ (𝑥 = 𝐶 → ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦))) |
7 | 3, 6 | sseq12d 3925 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝐶 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)))) |
8 | | ineq2 4111 |
. . . . 5
⊢ (𝑦 = 𝐷 → (𝐶 ∩ 𝑦) = (𝐶 ∩ 𝐷)) |
9 | 8 | pweqd 4513 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → 𝒫 (𝐶 ∩ 𝑦) = 𝒫 (𝐶 ∩ 𝐷)) |
10 | 9 | ineq2d 4117 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) |
11 | 10 | unieqd 4812 |
. . . . 5
⊢ (𝑦 = 𝐷 → ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) |
12 | 8, 11 | sseq12d 3925 |
. . . 4
⊢ (𝑦 = 𝐷 → ((𝐶 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)) ↔ (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷)))) |
13 | 7, 12 | rspc2v 3551 |
. . 3
⊢ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) → (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷)))) |
14 | 2, 13 | syl5com 31 |
. 2
⊢ (𝐵 ∈ TopBases → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷)))) |
15 | 14 | 3impib 1113 |
1
⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) |