| Step | Hyp | Ref
| Expression |
| 1 | | isbasis2g 22955 |
. . . . 5
⊢ (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔
∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ (𝑦 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)))) |
| 2 | 1 | ibi 267 |
. . . 4
⊢ (𝐵 ∈ TopBases →
∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ (𝑦 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧))) |
| 3 | | ineq1 4213 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → (𝑦 ∩ 𝑧) = (𝐶 ∩ 𝑧)) |
| 4 | | sseq2 4010 |
. . . . . . . . . 10
⊢ ((𝑦 ∩ 𝑧) = (𝐶 ∩ 𝑧) → (𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐶 ∩ 𝑧))) |
| 5 | 4 | anbi2d 630 |
. . . . . . . . 9
⊢ ((𝑦 ∩ 𝑧) = (𝐶 ∩ 𝑧) → ((𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)) ↔ (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)))) |
| 6 | 5 | rexbidv 3179 |
. . . . . . . 8
⊢ ((𝑦 ∩ 𝑧) = (𝐶 ∩ 𝑧) → (∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)) ↔ ∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)))) |
| 7 | 6 | raleqbi1dv 3338 |
. . . . . . 7
⊢ ((𝑦 ∩ 𝑧) = (𝐶 ∩ 𝑧) → (∀𝑤 ∈ (𝑦 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)) ↔ ∀𝑤 ∈ (𝐶 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)))) |
| 8 | 3, 7 | syl 17 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (∀𝑤 ∈ (𝑦 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)) ↔ ∀𝑤 ∈ (𝐶 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)))) |
| 9 | | ineq2 4214 |
. . . . . . 7
⊢ (𝑧 = 𝐷 → (𝐶 ∩ 𝑧) = (𝐶 ∩ 𝐷)) |
| 10 | | sseq2 4010 |
. . . . . . . . . 10
⊢ ((𝐶 ∩ 𝑧) = (𝐶 ∩ 𝐷) → (𝑥 ⊆ (𝐶 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐶 ∩ 𝐷))) |
| 11 | 10 | anbi2d 630 |
. . . . . . . . 9
⊢ ((𝐶 ∩ 𝑧) = (𝐶 ∩ 𝐷) → ((𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)) ↔ (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 12 | 11 | rexbidv 3179 |
. . . . . . . 8
⊢ ((𝐶 ∩ 𝑧) = (𝐶 ∩ 𝐷) → (∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)) ↔ ∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 13 | 12 | raleqbi1dv 3338 |
. . . . . . 7
⊢ ((𝐶 ∩ 𝑧) = (𝐶 ∩ 𝐷) → (∀𝑤 ∈ (𝐶 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)) ↔ ∀𝑤 ∈ (𝐶 ∩ 𝐷)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 14 | 9, 13 | syl 17 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (∀𝑤 ∈ (𝐶 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝑧)) ↔ ∀𝑤 ∈ (𝐶 ∩ 𝐷)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 15 | 8, 14 | rspc2v 3633 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ (𝑦 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)) → ∀𝑤 ∈ (𝐶 ∩ 𝐷)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 16 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (𝑤 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
| 17 | 16 | anbi1d 631 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → ((𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 18 | 17 | rexbidv 3179 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)) ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 19 | 18 | rspccv 3619 |
. . . . 5
⊢
(∀𝑤 ∈
(𝐶 ∩ 𝐷)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)) → (𝐴 ∈ (𝐶 ∩ 𝐷) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))) |
| 20 | 15, 19 | syl6com 37 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ (𝑦 ∩ 𝑧)∃𝑥 ∈ 𝐵 (𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑦 ∩ 𝑧)) → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐴 ∈ (𝐶 ∩ 𝐷) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))))) |
| 21 | 2, 20 | syl 17 |
. . 3
⊢ (𝐵 ∈ TopBases → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐴 ∈ (𝐶 ∩ 𝐷) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))))) |
| 22 | 21 | expd 415 |
. 2
⊢ (𝐵 ∈ TopBases → (𝐶 ∈ 𝐵 → (𝐷 ∈ 𝐵 → (𝐴 ∈ (𝐶 ∩ 𝐷) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷)))))) |
| 23 | 22 | imp43 427 |
1
⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) |