| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3155 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
| 3 | 2 | rspcv 3568 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
| 4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | rspcv 3568 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
| 6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: rspc2va 3584 rspc3v 3588 rspc6v 3593 disji2 5073 f1veqaeq 7190 isorel 7260 isosolem 7281 oveqrspc2v 7373 fovcld 7473 caovclg 7538 caovcomg 7541 caofidlcan 7648 resf1extb 7864 smoel 8280 fiint 9211 dffi3 9315 ltordlem 11642 seqhomo 13956 cshf1 14717 climcn2 15500 drsdir 18208 tsrlin 18491 dirge 18509 mgmhmlin 18607 issubmgm2 18611 mhmlin 18701 issubg2 19054 nsgbi 19069 ghmlin 19133 efgi 19631 efgred 19660 rglcom4d 20129 irredmul 20347 issubrng2 20473 issubrg2 20507 abvmul 20736 abvtri 20737 lmodlema 20798 islmodd 20799 rmodislmodlem 20862 rmodislmod 20863 lmhmlin 20969 lbsind 21014 rnglidlmcl 21153 ipcj 21571 obsip 21658 mplcoe5lem 21974 matecl 22340 dmatelnd 22411 scmateALT 22427 mdetdiaglem 22513 mdetdiagid 22515 pmatcoe1fsupp 22616 m2cpminvid2lem 22669 inopn 22814 basis1 22865 basis2 22866 iscldtop 23010 hausnei 23243 t1sep2 23284 nconnsubb 23338 r0sep 23663 fbasssin 23751 fcfneii 23952 ustssel 24121 xmeteq0 24253 tngngp3 24571 nmvs 24591 cncfi 24814 c1lip1 25929 aalioulem3 26269 logltb 26536 cvxcl 26922 2sqlem8 27364 nocvxminlem 27717 madebday 27845 negsproplem1 27970 negsprop 27977 axtgcgrrflx 28440 axtgsegcon 28442 axtg5seg 28443 axtgbtwnid 28444 axtgpasch 28445 axtgcont1 28446 axtgupdim2 28449 axtgeucl 28450 isperp2d 28694 f1otrgds 28847 brbtwn2 28883 axcontlem3 28944 axcontlem9 28950 axcontlem10 28951 upgrwlkdvdelem 29714 conngrv2edg 30175 frgrwopreglem5ALT 30302 ablocom 30528 nvs 30643 nvtri 30650 phpar2 30803 phpar 30804 shaddcl 31197 shmulcl 31198 cnopc 31893 unop 31895 hmop 31902 cnfnc 31910 adj1 31913 hstel2 32199 stj 32215 stcltr1i 32254 mddmdin0i 32411 cdj3lem1 32414 cdj3lem2b 32417 disji2f 32557 disjif2 32561 disjxpin 32568 isoun 32683 archirng 33157 archiexdiv 33159 slmdlema 33172 inelcarsg 34324 sibfof 34353 breprexplema 34643 axtgupdim2ALTV 34681 pconncn 35268 ivthALT 36379 poimirlem32 37702 ismtycnv 37852 ismtyima 37853 ismtyres 37858 bfplem1 37872 bfplem2 37873 ghomlinOLD 37938 rngohomadd 38019 rngohommul 38020 crngocom 38051 idladdcl 38069 idllmulcl 38070 idlrmulcl 38071 pridl 38087 ispridlc 38120 pridlc 38121 dmnnzd 38125 oposlem 39291 omllaw 39352 hlsuprexch 39490 lautle 40193 ltrnu 40230 tendovalco 40874 sticksstones1 42249 sticksstones2 42250 ntrkbimka 44141 relprel 45054 mullimc 45726 mullimcf 45733 lptre2pt 45748 fourierdlem54 46268 fcoresf1 47179 faovcl 47310 icceuelpartlem 47545 iccpartnel 47548 fargshiftf1 47551 sprsymrelfolem2 47603 reuopreuprim 47636 isubgr3stgrlem6 48081 isthincd2lem2 49546 |
| Copyright terms: Public domain | W3C validator |