Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3171 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3562 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3562 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 509 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 |
This theorem is referenced by: rspc2va 3576 rspc3v 3578 disji2 5063 f1veqaeq 7162 isorel 7229 isosolem 7250 oveqrspc2v 7334 fovcl 7434 caovclg 7496 caovcomg 7499 smoel 8222 fiint 9135 dffi3 9234 ltordlem 11546 seqhomo 13816 cshf1 14568 climcn2 15347 drsdir 18065 tsrlin 18348 dirge 18366 mhmlin 18482 issubg2 18815 nsgbi 18830 ghmlin 18884 efgi 19370 efgred 19399 irredmul 19996 issubrg2 20089 abvmul 20134 abvtri 20135 lmodlema 20173 islmodd 20174 rmodislmodlem 20235 rmodislmod 20236 rmodislmodOLD 20237 lmhmlin 20342 lbsind 20387 ipcj 20884 obsip 20973 mplcoe5lem 21285 matecl 21619 dmatelnd 21690 scmateALT 21706 mdetdiaglem 21792 mdetdiagid 21794 pmatcoe1fsupp 21895 m2cpminvid2lem 21948 inopn 22093 basis1 22145 basis2 22146 iscldtop 22291 hausnei 22524 t1sep2 22565 nconnsubb 22619 r0sep 22944 fbasssin 23032 fcfneii 23233 ustssel 23402 xmeteq0 23536 tngngp3 23865 nmvs 23885 cncfi 24102 c1lip1 25206 aalioulem3 25539 logltb 25800 cvxcl 26179 2sqlem8 26619 axtgcgrrflx 26868 axtgsegcon 26870 axtg5seg 26871 axtgbtwnid 26872 axtgpasch 26873 axtgcont1 26874 axtgupdim2 26877 axtgeucl 26878 isperp2d 27122 f1otrgds 27275 brbtwn2 27318 axcontlem3 27379 axcontlem9 27385 axcontlem10 27386 upgrwlkdvdelem 28149 conngrv2edg 28604 frgrwopreglem5ALT 28731 ablocom 28955 nvs 29070 nvtri 29077 phpar2 29230 phpar 29231 shaddcl 29624 shmulcl 29625 cnopc 30320 unop 30322 hmop 30329 cnfnc 30337 adj1 30340 hstel2 30626 stj 30642 stcltr1i 30681 mddmdin0i 30838 cdj3lem1 30841 cdj3lem2b 30844 disji2f 30961 disjif2 30965 disjxpin 30972 fovcld 31020 isoun 31079 archirng 31487 archiexdiv 31489 slmdlema 31501 inelcarsg 32323 sibfof 32352 breprexplema 32655 axtgupdim2ALTV 32693 pconncn 33231 nocvxminlem 34017 madebday 34125 ivthALT 34569 poimirlem32 35853 ismtycnv 36004 ismtyima 36005 ismtyres 36010 bfplem1 36024 bfplem2 36025 ghomlinOLD 36090 rngohomadd 36171 rngohommul 36172 crngocom 36203 idladdcl 36221 idllmulcl 36222 idlrmulcl 36223 pridl 36239 ispridlc 36272 pridlc 36273 dmnnzd 36277 oposlem 37238 omllaw 37299 hlsuprexch 37437 lautle 38140 ltrnu 38177 tendovalco 38821 sticksstones1 40144 sticksstones2 40145 ntrkbimka 41686 mullimc 43206 mullimcf 43213 lptre2pt 43230 fourierdlem54 43750 fcoresf1 44621 faovcl 44750 icceuelpartlem 44945 iccpartnel 44948 fargshiftf1 44951 sprsymrelfolem2 45003 reuopreuprim 45036 mgmhmlin 45398 issubmgm2 45402 isthincd2lem2 46375 |
Copyright terms: Public domain | W3C validator |