![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3184 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3631 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3631 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: rspc2va 3647 rspc3v 3651 rspc6v 3656 disji2 5150 f1veqaeq 7294 isorel 7362 isosolem 7383 oveqrspc2v 7475 fovcld 7577 caovclg 7642 caovcomg 7645 smoel 8416 fiint 9394 fiintOLD 9395 dffi3 9500 ltordlem 11815 seqhomo 14100 cshf1 14858 climcn2 15639 drsdir 18372 tsrlin 18655 dirge 18673 mgmhmlin 18737 issubmgm2 18741 mhmlin 18828 issubg2 19181 nsgbi 19197 ghmlin 19261 efgi 19761 efgred 19790 rglcom4d 20238 irredmul 20455 issubrng2 20584 issubrg2 20620 abvmul 20844 abvtri 20845 lmodlema 20885 islmodd 20886 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 lmhmlin 21057 lbsind 21102 rnglidlmcl 21249 ipcj 21675 obsip 21764 mplcoe5lem 22080 matecl 22452 dmatelnd 22523 scmateALT 22539 mdetdiaglem 22625 mdetdiagid 22627 pmatcoe1fsupp 22728 m2cpminvid2lem 22781 inopn 22926 basis1 22978 basis2 22979 iscldtop 23124 hausnei 23357 t1sep2 23398 nconnsubb 23452 r0sep 23777 fbasssin 23865 fcfneii 24066 ustssel 24235 xmeteq0 24369 tngngp3 24698 nmvs 24718 cncfi 24939 c1lip1 26056 aalioulem3 26394 logltb 26660 cvxcl 27046 2sqlem8 27488 nocvxminlem 27840 madebday 27956 negsproplem1 28078 negsprop 28085 axtgcgrrflx 28488 axtgsegcon 28490 axtg5seg 28491 axtgbtwnid 28492 axtgpasch 28493 axtgcont1 28494 axtgupdim2 28497 axtgeucl 28498 isperp2d 28742 f1otrgds 28895 brbtwn2 28938 axcontlem3 28999 axcontlem9 29005 axcontlem10 29006 upgrwlkdvdelem 29772 conngrv2edg 30227 frgrwopreglem5ALT 30354 ablocom 30580 nvs 30695 nvtri 30702 phpar2 30855 phpar 30856 shaddcl 31249 shmulcl 31250 cnopc 31945 unop 31947 hmop 31954 cnfnc 31962 adj1 31965 hstel2 32251 stj 32267 stcltr1i 32306 mddmdin0i 32463 cdj3lem1 32466 cdj3lem2b 32469 disji2f 32599 disjif2 32603 disjxpin 32610 isoun 32713 archirng 33168 archiexdiv 33170 slmdlema 33182 inelcarsg 34276 sibfof 34305 breprexplema 34607 axtgupdim2ALTV 34645 pconncn 35192 ivthALT 36301 poimirlem32 37612 ismtycnv 37762 ismtyima 37763 ismtyres 37768 bfplem1 37782 bfplem2 37783 ghomlinOLD 37848 rngohomadd 37929 rngohommul 37930 crngocom 37961 idladdcl 37979 idllmulcl 37980 idlrmulcl 37981 pridl 37997 ispridlc 38030 pridlc 38031 dmnnzd 38035 oposlem 39138 omllaw 39199 hlsuprexch 39338 lautle 40041 ltrnu 40078 tendovalco 40722 sticksstones1 42103 sticksstones2 42104 ntrkbimka 44000 mullimc 45537 mullimcf 45544 lptre2pt 45561 fourierdlem54 46081 fcoresf1 46984 faovcl 47115 icceuelpartlem 47309 iccpartnel 47312 fargshiftf1 47315 sprsymrelfolem2 47367 reuopreuprim 47400 isthincd2lem2 48703 |
Copyright terms: Public domain | W3C validator |