| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
| 3 | 2 | rspcv 3584 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
| 4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | rspcv 3584 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
| 6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc2va 3600 rspc3v 3604 rspc6v 3609 disji2 5091 f1veqaeq 7231 isorel 7301 isosolem 7322 oveqrspc2v 7414 fovcld 7516 caovclg 7581 caovcomg 7584 caofidlcan 7691 resf1extb 7910 smoel 8329 fiint 9277 fiintOLD 9278 dffi3 9382 ltordlem 11703 seqhomo 14014 cshf1 14775 climcn2 15559 drsdir 18263 tsrlin 18544 dirge 18562 mgmhmlin 18626 issubmgm2 18630 mhmlin 18720 issubg2 19073 nsgbi 19089 ghmlin 19153 efgi 19649 efgred 19678 rglcom4d 20120 irredmul 20338 issubrng2 20467 issubrg2 20501 abvmul 20730 abvtri 20731 lmodlema 20771 islmodd 20772 rmodislmodlem 20835 rmodislmod 20836 lmhmlin 20942 lbsind 20987 rnglidlmcl 21126 ipcj 21543 obsip 21630 mplcoe5lem 21946 matecl 22312 dmatelnd 22383 scmateALT 22399 mdetdiaglem 22485 mdetdiagid 22487 pmatcoe1fsupp 22588 m2cpminvid2lem 22641 inopn 22786 basis1 22837 basis2 22838 iscldtop 22982 hausnei 23215 t1sep2 23256 nconnsubb 23310 r0sep 23635 fbasssin 23723 fcfneii 23924 ustssel 24093 xmeteq0 24226 tngngp3 24544 nmvs 24564 cncfi 24787 c1lip1 25902 aalioulem3 26242 logltb 26509 cvxcl 26895 2sqlem8 27337 nocvxminlem 27689 madebday 27811 negsproplem1 27934 negsprop 27941 axtgcgrrflx 28389 axtgsegcon 28391 axtg5seg 28392 axtgbtwnid 28393 axtgpasch 28394 axtgcont1 28395 axtgupdim2 28398 axtgeucl 28399 isperp2d 28643 f1otrgds 28796 brbtwn2 28832 axcontlem3 28893 axcontlem9 28899 axcontlem10 28900 upgrwlkdvdelem 29666 conngrv2edg 30124 frgrwopreglem5ALT 30251 ablocom 30477 nvs 30592 nvtri 30599 phpar2 30752 phpar 30753 shaddcl 31146 shmulcl 31147 cnopc 31842 unop 31844 hmop 31851 cnfnc 31859 adj1 31862 hstel2 32148 stj 32164 stcltr1i 32203 mddmdin0i 32360 cdj3lem1 32363 cdj3lem2b 32366 disji2f 32506 disjif2 32510 disjxpin 32517 isoun 32625 archirng 33142 archiexdiv 33144 slmdlema 33156 inelcarsg 34302 sibfof 34331 breprexplema 34621 axtgupdim2ALTV 34659 pconncn 35211 ivthALT 36323 poimirlem32 37646 ismtycnv 37796 ismtyima 37797 ismtyres 37802 bfplem1 37816 bfplem2 37817 ghomlinOLD 37882 rngohomadd 37963 rngohommul 37964 crngocom 37995 idladdcl 38013 idllmulcl 38014 idlrmulcl 38015 pridl 38031 ispridlc 38064 pridlc 38065 dmnnzd 38069 oposlem 39175 omllaw 39236 hlsuprexch 39375 lautle 40078 ltrnu 40115 tendovalco 40759 sticksstones1 42134 sticksstones2 42135 ntrkbimka 44027 relprel 44941 mullimc 45614 mullimcf 45621 lptre2pt 45638 fourierdlem54 46158 fcoresf1 47070 faovcl 47201 icceuelpartlem 47436 iccpartnel 47439 fargshiftf1 47442 sprsymrelfolem2 47494 reuopreuprim 47527 isubgr3stgrlem6 47970 isthincd2lem2 49424 |
| Copyright terms: Public domain | W3C validator |