| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3157 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
| 3 | 2 | rspcv 3587 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
| 4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | rspcv 3587 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
| 6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 |
| This theorem is referenced by: rspc2va 3603 rspc3v 3607 rspc6v 3612 disji2 5094 f1veqaeq 7234 isorel 7304 isosolem 7325 oveqrspc2v 7417 fovcld 7519 caovclg 7584 caovcomg 7587 caofidlcan 7694 resf1extb 7913 smoel 8332 fiint 9284 fiintOLD 9285 dffi3 9389 ltordlem 11710 seqhomo 14021 cshf1 14782 climcn2 15566 drsdir 18270 tsrlin 18551 dirge 18569 mgmhmlin 18633 issubmgm2 18637 mhmlin 18727 issubg2 19080 nsgbi 19096 ghmlin 19160 efgi 19656 efgred 19685 rglcom4d 20127 irredmul 20345 issubrng2 20474 issubrg2 20508 abvmul 20737 abvtri 20738 lmodlema 20778 islmodd 20779 rmodislmodlem 20842 rmodislmod 20843 lmhmlin 20949 lbsind 20994 rnglidlmcl 21133 ipcj 21550 obsip 21637 mplcoe5lem 21953 matecl 22319 dmatelnd 22390 scmateALT 22406 mdetdiaglem 22492 mdetdiagid 22494 pmatcoe1fsupp 22595 m2cpminvid2lem 22648 inopn 22793 basis1 22844 basis2 22845 iscldtop 22989 hausnei 23222 t1sep2 23263 nconnsubb 23317 r0sep 23642 fbasssin 23730 fcfneii 23931 ustssel 24100 xmeteq0 24233 tngngp3 24551 nmvs 24571 cncfi 24794 c1lip1 25909 aalioulem3 26249 logltb 26516 cvxcl 26902 2sqlem8 27344 nocvxminlem 27696 madebday 27818 negsproplem1 27941 negsprop 27948 axtgcgrrflx 28396 axtgsegcon 28398 axtg5seg 28399 axtgbtwnid 28400 axtgpasch 28401 axtgcont1 28402 axtgupdim2 28405 axtgeucl 28406 isperp2d 28650 f1otrgds 28803 brbtwn2 28839 axcontlem3 28900 axcontlem9 28906 axcontlem10 28907 upgrwlkdvdelem 29673 conngrv2edg 30131 frgrwopreglem5ALT 30258 ablocom 30484 nvs 30599 nvtri 30606 phpar2 30759 phpar 30760 shaddcl 31153 shmulcl 31154 cnopc 31849 unop 31851 hmop 31858 cnfnc 31866 adj1 31869 hstel2 32155 stj 32171 stcltr1i 32210 mddmdin0i 32367 cdj3lem1 32370 cdj3lem2b 32373 disji2f 32513 disjif2 32517 disjxpin 32524 isoun 32632 archirng 33149 archiexdiv 33151 slmdlema 33163 inelcarsg 34309 sibfof 34338 breprexplema 34628 axtgupdim2ALTV 34666 pconncn 35218 ivthALT 36330 poimirlem32 37653 ismtycnv 37803 ismtyima 37804 ismtyres 37809 bfplem1 37823 bfplem2 37824 ghomlinOLD 37889 rngohomadd 37970 rngohommul 37971 crngocom 38002 idladdcl 38020 idllmulcl 38021 idlrmulcl 38022 pridl 38038 ispridlc 38071 pridlc 38072 dmnnzd 38076 oposlem 39182 omllaw 39243 hlsuprexch 39382 lautle 40085 ltrnu 40122 tendovalco 40766 sticksstones1 42141 sticksstones2 42142 ntrkbimka 44034 relprel 44948 mullimc 45621 mullimcf 45628 lptre2pt 45645 fourierdlem54 46165 fcoresf1 47074 faovcl 47205 icceuelpartlem 47440 iccpartnel 47443 fargshiftf1 47446 sprsymrelfolem2 47498 reuopreuprim 47531 isubgr3stgrlem6 47974 isthincd2lem2 49428 |
| Copyright terms: Public domain | W3C validator |