Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3122 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3555 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3555 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 |
This theorem is referenced by: rspc2va 3571 rspc3v 3573 disji2 5060 f1veqaeq 7124 isorel 7190 isosolem 7211 oveqrspc2v 7295 fovcl 7393 caovclg 7455 caovcomg 7458 smoel 8175 fiint 9052 dffi3 9151 ltordlem 11483 seqhomo 13751 cshf1 14504 climcn2 15283 drsdir 18001 tsrlin 18284 dirge 18302 mhmlin 18418 issubg2 18751 nsgbi 18766 ghmlin 18820 efgi 19306 efgred 19335 irredmul 19932 issubrg2 20025 abvmul 20070 abvtri 20071 lmodlema 20109 islmodd 20110 rmodislmodlem 20171 rmodislmod 20172 rmodislmodOLD 20173 lmhmlin 20278 lbsind 20323 ipcj 20820 obsip 20909 mplcoe5lem 21221 matecl 21555 dmatelnd 21626 scmateALT 21642 mdetdiaglem 21728 mdetdiagid 21730 pmatcoe1fsupp 21831 m2cpminvid2lem 21884 inopn 22029 basis1 22081 basis2 22082 iscldtop 22227 hausnei 22460 t1sep2 22501 nconnsubb 22555 r0sep 22880 fbasssin 22968 fcfneii 23169 ustssel 23338 xmeteq0 23472 tngngp3 23801 nmvs 23821 cncfi 24038 c1lip1 25142 aalioulem3 25475 logltb 25736 cvxcl 26115 2sqlem8 26555 axtgcgrrflx 26804 axtgsegcon 26806 axtg5seg 26807 axtgbtwnid 26808 axtgpasch 26809 axtgcont1 26810 axtgupdim2 26813 axtgeucl 26814 isperp2d 27058 f1otrgds 27211 brbtwn2 27254 axcontlem3 27315 axcontlem9 27321 axcontlem10 27322 upgrwlkdvdelem 28083 conngrv2edg 28538 frgrwopreglem5ALT 28665 ablocom 28889 nvs 29004 nvtri 29011 phpar2 29164 phpar 29165 shaddcl 29558 shmulcl 29559 cnopc 30254 unop 30256 hmop 30263 cnfnc 30271 adj1 30274 hstel2 30560 stj 30576 stcltr1i 30615 mddmdin0i 30772 cdj3lem1 30775 cdj3lem2b 30778 disji2f 30895 disjif2 30899 disjxpin 30906 fovcld 30954 isoun 31013 archirng 31421 archiexdiv 31423 slmdlema 31435 inelcarsg 32257 sibfof 32286 breprexplema 32589 axtgupdim2ALTV 32627 pconncn 33165 nocvxminlem 33951 madebday 34059 ivthALT 34503 poimirlem32 35788 ismtycnv 35939 ismtyima 35940 ismtyres 35945 bfplem1 35959 bfplem2 35960 ghomlinOLD 36025 rngohomadd 36106 rngohommul 36107 crngocom 36138 idladdcl 36156 idllmulcl 36157 idlrmulcl 36158 pridl 36174 ispridlc 36207 pridlc 36208 dmnnzd 36212 oposlem 37175 omllaw 37236 hlsuprexch 37374 lautle 38077 ltrnu 38114 tendovalco 38758 sticksstones1 40082 sticksstones2 40083 ntrkbimka 41601 mullimc 43111 mullimcf 43118 lptre2pt 43135 fourierdlem54 43655 fcoresf1 44514 faovcl 44643 icceuelpartlem 44839 iccpartnel 44842 fargshiftf1 44845 sprsymrelfolem2 44897 reuopreuprim 44930 mgmhmlin 45292 issubmgm2 45296 isthincd2lem2 46269 |
Copyright terms: Public domain | W3C validator |