![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3175 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3609 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3609 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 506 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 |
This theorem is referenced by: rspc2va 3624 rspc3v 3628 rspc6v 3632 disji2 5131 f1veqaeq 7260 isorel 7327 isosolem 7348 oveqrspc2v 7440 fovcld 7540 caovclg 7603 caovcomg 7606 smoel 8364 fiint 9328 dffi3 9430 ltordlem 11745 seqhomo 14021 cshf1 14766 climcn2 15543 drsdir 18261 tsrlin 18544 dirge 18562 mgmhmlin 18626 issubmgm2 18630 mhmlin 18717 issubg2 19059 nsgbi 19075 ghmlin 19137 efgi 19630 efgred 19659 rglcom4d 20107 irredmul 20322 issubrng2 20448 issubrg2 20484 abvmul 20582 abvtri 20583 lmodlema 20621 islmodd 20622 rmodislmodlem 20685 rmodislmod 20686 rmodislmodOLD 20687 lmhmlin 20792 lbsind 20837 rnglidlmcl 20984 ipcj 21408 obsip 21497 mplcoe5lem 21815 matecl 22149 dmatelnd 22220 scmateALT 22236 mdetdiaglem 22322 mdetdiagid 22324 pmatcoe1fsupp 22425 m2cpminvid2lem 22478 inopn 22623 basis1 22675 basis2 22676 iscldtop 22821 hausnei 23054 t1sep2 23095 nconnsubb 23149 r0sep 23474 fbasssin 23562 fcfneii 23763 ustssel 23932 xmeteq0 24066 tngngp3 24395 nmvs 24415 cncfi 24636 c1lip1 25748 aalioulem3 26081 logltb 26342 cvxcl 26723 2sqlem8 27163 nocvxminlem 27513 madebday 27629 negsproplem1 27739 negsprop 27746 axtgcgrrflx 27978 axtgsegcon 27980 axtg5seg 27981 axtgbtwnid 27982 axtgpasch 27983 axtgcont1 27984 axtgupdim2 27987 axtgeucl 27988 isperp2d 28232 f1otrgds 28385 brbtwn2 28428 axcontlem3 28489 axcontlem9 28495 axcontlem10 28496 upgrwlkdvdelem 29258 conngrv2edg 29713 frgrwopreglem5ALT 29840 ablocom 30066 nvs 30181 nvtri 30188 phpar2 30341 phpar 30342 shaddcl 30735 shmulcl 30736 cnopc 31431 unop 31433 hmop 31440 cnfnc 31448 adj1 31451 hstel2 31737 stj 31753 stcltr1i 31792 mddmdin0i 31949 cdj3lem1 31952 cdj3lem2b 31955 disji2f 32073 disjif2 32077 disjxpin 32084 isoun 32188 archirng 32602 archiexdiv 32604 slmdlema 32616 inelcarsg 33606 sibfof 33635 breprexplema 33938 axtgupdim2ALTV 33976 pconncn 34511 ivthALT 35525 poimirlem32 36825 ismtycnv 36975 ismtyima 36976 ismtyres 36981 bfplem1 36995 bfplem2 36996 ghomlinOLD 37061 rngohomadd 37142 rngohommul 37143 crngocom 37174 idladdcl 37192 idllmulcl 37193 idlrmulcl 37194 pridl 37210 ispridlc 37243 pridlc 37244 dmnnzd 37248 oposlem 38357 omllaw 38418 hlsuprexch 38557 lautle 39260 ltrnu 39297 tendovalco 39941 sticksstones1 41270 sticksstones2 41271 ntrkbimka 43093 mullimc 44632 mullimcf 44639 lptre2pt 44656 fourierdlem54 45176 fcoresf1 46079 faovcl 46208 icceuelpartlem 46403 iccpartnel 46406 fargshiftf1 46409 sprsymrelfolem2 46461 reuopreuprim 46494 isthincd2lem2 47745 |
Copyright terms: Public domain | W3C validator |