![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3178 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3609 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3609 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 509 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 |
This theorem is referenced by: rspc2va 3624 rspc3v 3628 rspc6v 3632 disji2 5131 f1veqaeq 7256 isorel 7323 isosolem 7344 oveqrspc2v 7436 fovcld 7536 caovclg 7599 caovcomg 7602 smoel 8360 fiint 9324 dffi3 9426 ltordlem 11739 seqhomo 14015 cshf1 14760 climcn2 15537 drsdir 18255 tsrlin 18538 dirge 18556 mhmlin 18679 issubg2 19021 nsgbi 19037 ghmlin 19097 efgi 19587 efgred 19616 rglcom4d 20034 irredmul 20243 issubrg2 20339 abvmul 20437 abvtri 20438 lmodlema 20476 islmodd 20477 rmodislmodlem 20539 rmodislmod 20540 rmodislmodOLD 20541 lmhmlin 20646 lbsind 20691 ipcj 21187 obsip 21276 mplcoe5lem 21594 matecl 21927 dmatelnd 21998 scmateALT 22014 mdetdiaglem 22100 mdetdiagid 22102 pmatcoe1fsupp 22203 m2cpminvid2lem 22256 inopn 22401 basis1 22453 basis2 22454 iscldtop 22599 hausnei 22832 t1sep2 22873 nconnsubb 22927 r0sep 23252 fbasssin 23340 fcfneii 23541 ustssel 23710 xmeteq0 23844 tngngp3 24173 nmvs 24193 cncfi 24410 c1lip1 25514 aalioulem3 25847 logltb 26108 cvxcl 26489 2sqlem8 26929 nocvxminlem 27279 madebday 27394 negsproplem1 27502 negsprop 27509 axtgcgrrflx 27713 axtgsegcon 27715 axtg5seg 27716 axtgbtwnid 27717 axtgpasch 27718 axtgcont1 27719 axtgupdim2 27722 axtgeucl 27723 isperp2d 27967 f1otrgds 28120 brbtwn2 28163 axcontlem3 28224 axcontlem9 28230 axcontlem10 28231 upgrwlkdvdelem 28993 conngrv2edg 29448 frgrwopreglem5ALT 29575 ablocom 29801 nvs 29916 nvtri 29923 phpar2 30076 phpar 30077 shaddcl 30470 shmulcl 30471 cnopc 31166 unop 31168 hmop 31175 cnfnc 31183 adj1 31186 hstel2 31472 stj 31488 stcltr1i 31527 mddmdin0i 31684 cdj3lem1 31687 cdj3lem2b 31690 disji2f 31808 disjif2 31812 disjxpin 31819 isoun 31923 archirng 32334 archiexdiv 32336 slmdlema 32348 inelcarsg 33310 sibfof 33339 breprexplema 33642 axtgupdim2ALTV 33680 pconncn 34215 ivthALT 35220 poimirlem32 36520 ismtycnv 36670 ismtyima 36671 ismtyres 36676 bfplem1 36690 bfplem2 36691 ghomlinOLD 36756 rngohomadd 36837 rngohommul 36838 crngocom 36869 idladdcl 36887 idllmulcl 36888 idlrmulcl 36889 pridl 36905 ispridlc 36938 pridlc 36939 dmnnzd 36943 oposlem 38052 omllaw 38113 hlsuprexch 38252 lautle 38955 ltrnu 38992 tendovalco 39636 sticksstones1 40962 sticksstones2 40963 ntrkbimka 42789 mullimc 44332 mullimcf 44339 lptre2pt 44356 fourierdlem54 44876 fcoresf1 45779 faovcl 45908 icceuelpartlem 46103 iccpartnel 46106 fargshiftf1 46109 sprsymrelfolem2 46161 reuopreuprim 46194 mgmhmlin 46556 issubmgm2 46560 issubrng2 46737 rnglidlmcl 46748 isthincd2lem2 47656 |
Copyright terms: Public domain | W3C validator |