| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
| 3 | 2 | rspcv 3581 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
| 4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | rspcv 3581 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
| 6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc2va 3597 rspc3v 3601 rspc6v 3606 disji2 5086 f1veqaeq 7213 isorel 7283 isosolem 7304 oveqrspc2v 7396 fovcld 7496 caovclg 7561 caovcomg 7564 caofidlcan 7671 resf1extb 7890 smoel 8306 fiint 9253 fiintOLD 9254 dffi3 9358 ltordlem 11679 seqhomo 13990 cshf1 14751 climcn2 15535 drsdir 18243 tsrlin 18526 dirge 18544 mgmhmlin 18608 issubmgm2 18612 mhmlin 18702 issubg2 19055 nsgbi 19071 ghmlin 19135 efgi 19633 efgred 19662 rglcom4d 20131 irredmul 20349 issubrng2 20478 issubrg2 20512 abvmul 20741 abvtri 20742 lmodlema 20803 islmodd 20804 rmodislmodlem 20867 rmodislmod 20868 lmhmlin 20974 lbsind 21019 rnglidlmcl 21158 ipcj 21576 obsip 21663 mplcoe5lem 21979 matecl 22345 dmatelnd 22416 scmateALT 22432 mdetdiaglem 22518 mdetdiagid 22520 pmatcoe1fsupp 22621 m2cpminvid2lem 22674 inopn 22819 basis1 22870 basis2 22871 iscldtop 23015 hausnei 23248 t1sep2 23289 nconnsubb 23343 r0sep 23668 fbasssin 23756 fcfneii 23957 ustssel 24126 xmeteq0 24259 tngngp3 24577 nmvs 24597 cncfi 24820 c1lip1 25935 aalioulem3 26275 logltb 26542 cvxcl 26928 2sqlem8 27370 nocvxminlem 27723 madebday 27849 negsproplem1 27974 negsprop 27981 axtgcgrrflx 28442 axtgsegcon 28444 axtg5seg 28445 axtgbtwnid 28446 axtgpasch 28447 axtgcont1 28448 axtgupdim2 28451 axtgeucl 28452 isperp2d 28696 f1otrgds 28849 brbtwn2 28885 axcontlem3 28946 axcontlem9 28952 axcontlem10 28953 upgrwlkdvdelem 29716 conngrv2edg 30174 frgrwopreglem5ALT 30301 ablocom 30527 nvs 30642 nvtri 30649 phpar2 30802 phpar 30803 shaddcl 31196 shmulcl 31197 cnopc 31892 unop 31894 hmop 31901 cnfnc 31909 adj1 31912 hstel2 32198 stj 32214 stcltr1i 32253 mddmdin0i 32410 cdj3lem1 32413 cdj3lem2b 32416 disji2f 32556 disjif2 32560 disjxpin 32567 isoun 32675 archirng 33157 archiexdiv 33159 slmdlema 33172 inelcarsg 34295 sibfof 34324 breprexplema 34614 axtgupdim2ALTV 34652 pconncn 35204 ivthALT 36316 poimirlem32 37639 ismtycnv 37789 ismtyima 37790 ismtyres 37795 bfplem1 37809 bfplem2 37810 ghomlinOLD 37875 rngohomadd 37956 rngohommul 37957 crngocom 37988 idladdcl 38006 idllmulcl 38007 idlrmulcl 38008 pridl 38024 ispridlc 38057 pridlc 38058 dmnnzd 38062 oposlem 39168 omllaw 39229 hlsuprexch 39368 lautle 40071 ltrnu 40108 tendovalco 40752 sticksstones1 42127 sticksstones2 42128 ntrkbimka 44020 relprel 44934 mullimc 45607 mullimcf 45614 lptre2pt 45631 fourierdlem54 46151 fcoresf1 47063 faovcl 47194 icceuelpartlem 47429 iccpartnel 47432 fargshiftf1 47435 sprsymrelfolem2 47487 reuopreuprim 47520 isubgr3stgrlem6 47963 isthincd2lem2 49417 |
| Copyright terms: Public domain | W3C validator |