Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3170 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3566 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3566 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 508 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 |
This theorem is referenced by: rspc2va 3580 rspc3v 3582 disji2 5074 f1veqaeq 7186 isorel 7253 isosolem 7274 oveqrspc2v 7364 fovcl 7464 caovclg 7526 caovcomg 7529 smoel 8261 fiint 9189 dffi3 9288 ltordlem 11601 seqhomo 13871 cshf1 14621 climcn2 15401 drsdir 18117 tsrlin 18400 dirge 18418 mhmlin 18534 issubg2 18866 nsgbi 18881 ghmlin 18935 efgi 19420 efgred 19449 irredmul 20046 issubrg2 20149 abvmul 20195 abvtri 20196 lmodlema 20234 islmodd 20235 rmodislmodlem 20296 rmodislmod 20297 rmodislmodOLD 20298 lmhmlin 20403 lbsind 20448 ipcj 20945 obsip 21034 mplcoe5lem 21346 matecl 21680 dmatelnd 21751 scmateALT 21767 mdetdiaglem 21853 mdetdiagid 21855 pmatcoe1fsupp 21956 m2cpminvid2lem 22009 inopn 22154 basis1 22206 basis2 22207 iscldtop 22352 hausnei 22585 t1sep2 22626 nconnsubb 22680 r0sep 23005 fbasssin 23093 fcfneii 23294 ustssel 23463 xmeteq0 23597 tngngp3 23926 nmvs 23946 cncfi 24163 c1lip1 25267 aalioulem3 25600 logltb 25861 cvxcl 26240 2sqlem8 26680 nocvxminlem 27023 axtgcgrrflx 27112 axtgsegcon 27114 axtg5seg 27115 axtgbtwnid 27116 axtgpasch 27117 axtgcont1 27118 axtgupdim2 27121 axtgeucl 27122 isperp2d 27366 f1otrgds 27519 brbtwn2 27562 axcontlem3 27623 axcontlem9 27629 axcontlem10 27630 upgrwlkdvdelem 28392 conngrv2edg 28847 frgrwopreglem5ALT 28974 ablocom 29198 nvs 29313 nvtri 29320 phpar2 29473 phpar 29474 shaddcl 29867 shmulcl 29868 cnopc 30563 unop 30565 hmop 30572 cnfnc 30580 adj1 30583 hstel2 30869 stj 30885 stcltr1i 30924 mddmdin0i 31081 cdj3lem1 31084 cdj3lem2b 31087 disji2f 31203 disjif2 31207 disjxpin 31214 fovcld 31262 isoun 31321 archirng 31729 archiexdiv 31731 slmdlema 31743 inelcarsg 32578 sibfof 32607 breprexplema 32910 axtgupdim2ALTV 32948 pconncn 33485 madebday 34176 ivthALT 34620 poimirlem32 35922 ismtycnv 36073 ismtyima 36074 ismtyres 36079 bfplem1 36093 bfplem2 36094 ghomlinOLD 36159 rngohomadd 36240 rngohommul 36241 crngocom 36272 idladdcl 36290 idllmulcl 36291 idlrmulcl 36292 pridl 36308 ispridlc 36341 pridlc 36342 dmnnzd 36346 oposlem 37457 omllaw 37518 hlsuprexch 37657 lautle 38360 ltrnu 38397 tendovalco 39041 sticksstones1 40367 sticksstones2 40368 ntrkbimka 41978 mullimc 43502 mullimcf 43509 lptre2pt 43526 fourierdlem54 44046 fcoresf1 44923 faovcl 45052 icceuelpartlem 45247 iccpartnel 45250 fargshiftf1 45253 sprsymrelfolem2 45305 reuopreuprim 45338 mgmhmlin 45700 issubmgm2 45704 isthincd2lem2 46677 |
Copyright terms: Public domain | W3C validator |