![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3175 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
3 | 2 | rspcv 3617 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 4 | rspcv 3617 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 |
This theorem is referenced by: rspc2va 3633 rspc3v 3637 rspc6v 3642 disji2 5131 f1veqaeq 7276 isorel 7345 isosolem 7366 oveqrspc2v 7457 fovcld 7559 caovclg 7624 caovcomg 7627 smoel 8398 fiint 9363 fiintOLD 9364 dffi3 9468 ltordlem 11785 seqhomo 14086 cshf1 14844 climcn2 15625 drsdir 18359 tsrlin 18642 dirge 18660 mgmhmlin 18724 issubmgm2 18728 mhmlin 18818 issubg2 19171 nsgbi 19187 ghmlin 19251 efgi 19751 efgred 19780 rglcom4d 20228 irredmul 20445 issubrng2 20574 issubrg2 20608 abvmul 20838 abvtri 20839 lmodlema 20879 islmodd 20880 rmodislmodlem 20943 rmodislmod 20944 rmodislmodOLD 20945 lmhmlin 21051 lbsind 21096 rnglidlmcl 21243 ipcj 21669 obsip 21758 mplcoe5lem 22074 matecl 22446 dmatelnd 22517 scmateALT 22533 mdetdiaglem 22619 mdetdiagid 22621 pmatcoe1fsupp 22722 m2cpminvid2lem 22775 inopn 22920 basis1 22972 basis2 22973 iscldtop 23118 hausnei 23351 t1sep2 23392 nconnsubb 23446 r0sep 23771 fbasssin 23859 fcfneii 24060 ustssel 24229 xmeteq0 24363 tngngp3 24692 nmvs 24712 cncfi 24933 c1lip1 26050 aalioulem3 26390 logltb 26656 cvxcl 27042 2sqlem8 27484 nocvxminlem 27836 madebday 27952 negsproplem1 28074 negsprop 28081 axtgcgrrflx 28484 axtgsegcon 28486 axtg5seg 28487 axtgbtwnid 28488 axtgpasch 28489 axtgcont1 28490 axtgupdim2 28493 axtgeucl 28494 isperp2d 28738 f1otrgds 28891 brbtwn2 28934 axcontlem3 28995 axcontlem9 29001 axcontlem10 29002 upgrwlkdvdelem 29768 conngrv2edg 30223 frgrwopreglem5ALT 30350 ablocom 30576 nvs 30691 nvtri 30698 phpar2 30851 phpar 30852 shaddcl 31245 shmulcl 31246 cnopc 31941 unop 31943 hmop 31950 cnfnc 31958 adj1 31961 hstel2 32247 stj 32263 stcltr1i 32302 mddmdin0i 32459 cdj3lem1 32462 cdj3lem2b 32465 disji2f 32596 disjif2 32600 disjxpin 32607 isoun 32716 archirng 33177 archiexdiv 33179 slmdlema 33191 inelcarsg 34292 sibfof 34321 breprexplema 34623 axtgupdim2ALTV 34661 pconncn 35208 ivthALT 36317 poimirlem32 37638 ismtycnv 37788 ismtyima 37789 ismtyres 37794 bfplem1 37808 bfplem2 37809 ghomlinOLD 37874 rngohomadd 37955 rngohommul 37956 crngocom 37987 idladdcl 38005 idllmulcl 38006 idlrmulcl 38007 pridl 38023 ispridlc 38056 pridlc 38057 dmnnzd 38061 oposlem 39163 omllaw 39224 hlsuprexch 39363 lautle 40066 ltrnu 40103 tendovalco 40747 sticksstones1 42127 sticksstones2 42128 ntrkbimka 44027 mullimc 45571 mullimcf 45578 lptre2pt 45595 fourierdlem54 46115 fcoresf1 47018 faovcl 47149 icceuelpartlem 47359 iccpartnel 47362 fargshiftf1 47365 sprsymrelfolem2 47417 reuopreuprim 47450 isubgr3stgrlem6 47873 isthincd2lem2 48835 |
Copyright terms: Public domain | W3C validator |