| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2v | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3163 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
| 3 | 2 | rspcv 3597 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
| 4 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | rspcv 3597 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
| 6 | 3, 5 | sylan9 507 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 |
| This theorem is referenced by: rspc2va 3613 rspc3v 3617 rspc6v 3622 disji2 5103 f1veqaeq 7248 isorel 7318 isosolem 7339 oveqrspc2v 7430 fovcld 7532 caovclg 7597 caovcomg 7600 caofidlcan 7707 resf1extb 7928 smoel 8372 fiint 9336 fiintOLD 9337 dffi3 9441 ltordlem 11760 seqhomo 14065 cshf1 14826 climcn2 15607 drsdir 18312 tsrlin 18593 dirge 18611 mgmhmlin 18675 issubmgm2 18679 mhmlin 18769 issubg2 19122 nsgbi 19138 ghmlin 19202 efgi 19698 efgred 19727 rglcom4d 20169 irredmul 20387 issubrng2 20516 issubrg2 20550 abvmul 20779 abvtri 20780 lmodlema 20820 islmodd 20821 rmodislmodlem 20884 rmodislmod 20885 lmhmlin 20991 lbsind 21036 rnglidlmcl 21175 ipcj 21592 obsip 21679 mplcoe5lem 21995 matecl 22361 dmatelnd 22432 scmateALT 22448 mdetdiaglem 22534 mdetdiagid 22536 pmatcoe1fsupp 22637 m2cpminvid2lem 22690 inopn 22835 basis1 22886 basis2 22887 iscldtop 23031 hausnei 23264 t1sep2 23305 nconnsubb 23359 r0sep 23684 fbasssin 23772 fcfneii 23973 ustssel 24142 xmeteq0 24275 tngngp3 24593 nmvs 24613 cncfi 24836 c1lip1 25952 aalioulem3 26292 logltb 26559 cvxcl 26945 2sqlem8 27387 nocvxminlem 27739 madebday 27855 negsproplem1 27977 negsprop 27984 axtgcgrrflx 28387 axtgsegcon 28389 axtg5seg 28390 axtgbtwnid 28391 axtgpasch 28392 axtgcont1 28393 axtgupdim2 28396 axtgeucl 28397 isperp2d 28641 f1otrgds 28794 brbtwn2 28830 axcontlem3 28891 axcontlem9 28897 axcontlem10 28898 upgrwlkdvdelem 29664 conngrv2edg 30122 frgrwopreglem5ALT 30249 ablocom 30475 nvs 30590 nvtri 30597 phpar2 30750 phpar 30751 shaddcl 31144 shmulcl 31145 cnopc 31840 unop 31842 hmop 31849 cnfnc 31857 adj1 31860 hstel2 32146 stj 32162 stcltr1i 32201 mddmdin0i 32358 cdj3lem1 32361 cdj3lem2b 32364 disji2f 32504 disjif2 32508 disjxpin 32515 isoun 32625 archirng 33132 archiexdiv 33134 slmdlema 33146 inelcarsg 34289 sibfof 34318 breprexplema 34608 axtgupdim2ALTV 34646 pconncn 35192 ivthALT 36299 poimirlem32 37622 ismtycnv 37772 ismtyima 37773 ismtyres 37778 bfplem1 37792 bfplem2 37793 ghomlinOLD 37858 rngohomadd 37939 rngohommul 37940 crngocom 37971 idladdcl 37989 idllmulcl 37990 idlrmulcl 37991 pridl 38007 ispridlc 38040 pridlc 38041 dmnnzd 38045 oposlem 39146 omllaw 39207 hlsuprexch 39346 lautle 40049 ltrnu 40086 tendovalco 40730 sticksstones1 42105 sticksstones2 42106 ntrkbimka 44009 relprel 44924 mullimc 45593 mullimcf 45600 lptre2pt 45617 fourierdlem54 46137 fcoresf1 47046 faovcl 47177 icceuelpartlem 47397 iccpartnel 47400 fargshiftf1 47403 sprsymrelfolem2 47455 reuopreuprim 47488 isubgr3stgrlem6 47931 isthincd2lem2 49269 |
| Copyright terms: Public domain | W3C validator |