MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2 Structured version   Visualization version   GIF version

Theorem seqf1olem2 14083
Description: Lemma for seqf1o 14084. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1olem.5 (𝜑𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
seqf1olem.6 (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝐶)
seqf1olem.7 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))))
seqf1olem.8 𝐾 = (𝐹‘(𝑁 + 1))
seqf1olem.9 (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
Assertion
Ref Expression
seqf1olem2 (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1)))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑔,𝑘,𝑥,𝑦,𝑧   𝑓,𝑀,𝑔,𝑘,𝑥,𝑦,𝑧   + ,𝑓,𝑔,𝑘,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝑁,𝑔,𝑘,𝑥,𝑦,𝑧   𝑘,𝐾,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐽(𝑘)   𝐾(𝑓,𝑔)

Proof of Theorem seqf1olem2
StepHypRef Expression
1 seqf1olem.6 . . . . . . . . . 10 (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝐶)
21ffnd 6737 . . . . . . . . 9 (𝜑𝐺 Fn (𝑀...(𝑁 + 1)))
3 fzssp1 13607 . . . . . . . . 9 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
4 fnssres 6691 . . . . . . . . 9 ((𝐺 Fn (𝑀...(𝑁 + 1)) ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁))
52, 3, 4sylancl 586 . . . . . . . 8 (𝜑 → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁))
6 fzfid 14014 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ∈ Fin)
7 fnfi 9218 . . . . . . . 8 (((𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin)
85, 6, 7syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin)
98elexd 3504 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ V)
10 seqf1o.1 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11 seqf1o.2 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
12 seqf1o.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 seqf1o.4 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
14 seqf1o.5 . . . . . . . . 9 (𝜑𝐶𝑆)
15 seqf1olem.5 . . . . . . . . 9 (𝜑𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
16 seqf1olem.7 . . . . . . . . 9 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))))
17 seqf1olem.8 . . . . . . . . 9 𝐾 = (𝐹‘(𝑁 + 1))
1810, 11, 12, 13, 14, 15, 1, 16, 17seqf1olem1 14082 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
19 f1of 6848 . . . . . . . 8 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2018, 19syl 17 . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
21 fex2 7958 . . . . . . 7 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V)
2220, 6, 6, 21syl3anc 1373 . . . . . 6 (𝜑𝐽 ∈ V)
239, 22jca 511 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V))
24 seqf1olem.9 . . . . 5 (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
25 fssres 6774 . . . . . . 7 ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)
261, 3, 25sylancl 586 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)
2718, 26jca 511 . . . . 5 (𝜑 → (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶))
28 f1oeq1 6836 . . . . . . . 8 (𝑓 = 𝐽 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
29 feq1 6716 . . . . . . . 8 (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶))
3028, 29bi2anan9r 639 . . . . . . 7 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)))
31 coeq1 5868 . . . . . . . . . . 11 (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓))
32 coeq2 5869 . . . . . . . . . . 11 (𝑓 = 𝐽 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))
3331, 32sylan9eq 2797 . . . . . . . . . 10 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (𝑔𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))
3433seqeq3d 14050 . . . . . . . . 9 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , (𝑔𝑓)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)))
3534fveq1d 6908 . . . . . . . 8 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
36 simpl 482 . . . . . . . . . 10 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → 𝑔 = (𝐺 ↾ (𝑀...𝑁)))
3736seqeq3d 14050 . . . . . . . . 9 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝐺 ↾ (𝑀...𝑁))))
3837fveq1d 6908 . . . . . . . 8 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))
3935, 38eqeq12d 2753 . . . . . . 7 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)))
4030, 39imbi12d 344 . . . . . 6 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))))
4140spc2gv 3600 . . . . 5 (((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V) → (∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))))
4223, 24, 27, 41syl3c 66 . . . 4 (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))
43 fvres 6925 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺𝑥))
4443adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺𝑥))
4513, 44seqfveq 14067 . . . 4 (𝜑 → (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
4642, 45eqtrd 2777 . . 3 (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
4746oveq1d 7446 . 2 (𝜑 → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1))))
4810adantlr 715 . . . . 5 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4912adantlr 715 . . . . 5 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
50 elfzuz3 13561 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
5150adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝐾))
52 eluzp1p1 12906 . . . . . 6 (𝑁 ∈ (ℤ𝐾) → (𝑁 + 1) ∈ (ℤ‘(𝐾 + 1)))
5351, 52syl 17 . . . . 5 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈ (ℤ‘(𝐾 + 1)))
54 elfzuz 13560 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
5554adantl 481 . . . . 5 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (ℤ𝑀))
56 f1of 6848 . . . . . . . . . 10 (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
5715, 56syl 17 . . . . . . . . 9 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
58 fco 6760 . . . . . . . . 9 ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝐶)
591, 57, 58syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝐶)
6059, 14fssd 6753 . . . . . . 7 (𝜑 → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝑆)
6160ffvelcdmda 7104 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
6261adantlr 715 . . . . 5 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
6348, 49, 53, 55, 62seqsplit 14076 . . . 4 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))))
64 elfzp12 13643 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
6564biimpa 476 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁)))
6613, 65sylan 580 . . . . 5 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁)))
67 seqeq1 14045 . . . . . . . . . . 11 (𝐾 = 𝑀 → seq𝐾( + , (𝐺𝐹)) = seq𝑀( + , (𝐺𝐹)))
6867eqcomd 2743 . . . . . . . . . 10 (𝐾 = 𝑀 → seq𝑀( + , (𝐺𝐹)) = seq𝐾( + , (𝐺𝐹)))
6968fveq1d 6908 . . . . . . . . 9 (𝐾 = 𝑀 → (seq𝑀( + , (𝐺𝐹))‘𝐾) = (seq𝐾( + , (𝐺𝐹))‘𝐾))
70 f1ocnv 6860 . . . . . . . . . . . . 13 (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
71 f1of 6848 . . . . . . . . . . . . 13 (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
7215, 70, 713syl 18 . . . . . . . . . . . 12 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
73 peano2uz 12943 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
74 eluzfz2 13572 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
7513, 73, 743syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
7672, 75ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝑁 + 1)) ∈ (𝑀...(𝑁 + 1)))
7717, 76eqeltrid 2845 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...(𝑁 + 1)))
78 elfzelz 13564 . . . . . . . . . 10 (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ ℤ)
79 seq1 14055 . . . . . . . . . 10 (𝐾 ∈ ℤ → (seq𝐾( + , (𝐺𝐹))‘𝐾) = ((𝐺𝐹)‘𝐾))
8077, 78, 793syl 18 . . . . . . . . 9 (𝜑 → (seq𝐾( + , (𝐺𝐹))‘𝐾) = ((𝐺𝐹)‘𝐾))
8169, 80sylan9eqr 2799 . . . . . . . 8 ((𝜑𝐾 = 𝑀) → (seq𝑀( + , (𝐺𝐹))‘𝐾) = ((𝐺𝐹)‘𝐾))
8281oveq1d 7446 . . . . . . 7 ((𝜑𝐾 = 𝑀) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))))
83 simpr 484 . . . . . . . . 9 ((𝜑𝐾 = 𝑀) → 𝐾 = 𝑀)
84 eluzfz1 13571 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8513, 84syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝑀...𝑁))
8685adantr 480 . . . . . . . . 9 ((𝜑𝐾 = 𝑀) → 𝑀 ∈ (𝑀...𝑁))
8783, 86eqeltrd 2841 . . . . . . . 8 ((𝜑𝐾 = 𝑀) → 𝐾 ∈ (𝑀...𝑁))
8811adantlr 715 . . . . . . . . . 10 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
8914adantr 480 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝐶𝑆)
9059adantr 480 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝐶)
9177adantr 480 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...(𝑁 + 1)))
92 peano2uz 12943 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
93 fzss1 13603 . . . . . . . . . . 11 ((𝐾 + 1) ∈ (ℤ𝑀) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1)))
9455, 92, 933syl 18 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1)))
9548, 88, 49, 53, 89, 90, 91, 94seqf1olem2a 14081 . . . . . . . . 9 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) + ((𝐺𝐹)‘𝐾)))
96 1zzd 12648 . . . . . . . . . . 11 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 1 ∈ ℤ)
97 elfzuz 13560 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ (ℤ𝑀))
98 fzss1 13603 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
9977, 97, 983syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾...𝑁) ⊆ (𝑀...𝑁))
10099sselda 3983 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
10120ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐽𝑥) ∈ (𝑀...𝑁))
102100, 101syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐽𝑥) ∈ (𝑀...𝑁))
103102fvresd 6926 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐽𝑥)))
104 breq1 5146 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (𝑘 < 𝐾𝑥 < 𝐾))
105 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥𝑘 = 𝑥)
106 oveq1 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
107104, 105, 106ifbieq12d 4554 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑥 → if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)) = if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))
108107fveq2d 6910 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
109 fvex 6919 . . . . . . . . . . . . . . . . . 18 (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) ∈ V
110108, 16, 109fvmpt 7016 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑀...𝑁) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
111100, 110syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
11277, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℤ)
113112zred 12722 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℝ)
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℝ)
115 elfzelz 13564 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ ℤ)
116115adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℤ)
117116zred 12722 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℝ)
118 elfzle1 13567 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾...𝑁) → 𝐾𝑥)
119118adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝐾𝑥)
120114, 117, 119lensymd 11412 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ¬ 𝑥 < 𝐾)
121 iffalse 4534 . . . . . . . . . . . . . . . . . 18 𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = (𝑥 + 1))
122121fveq2d 6910 . . . . . . . . . . . . . . . . 17 𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1)))
123120, 122syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1)))
124111, 123eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐽𝑥) = (𝐹‘(𝑥 + 1)))
125124fveq2d 6910 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐺‘(𝐽𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1))))
126103, 125eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1))))
127 fvco3 7008 . . . . . . . . . . . . . . 15 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
12820, 127sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
129100, 128syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
130 fzp1elp1 13617 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑁) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1)))
131100, 130syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1)))
132 fvco3 7008 . . . . . . . . . . . . . . 15 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1))))
13357, 132sylan 580 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1))))
134131, 133syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ((𝐺𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1))))
135126, 129, 1343eqtr4d 2787 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺𝐹)‘(𝑥 + 1)))
136135adantlr 715 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺𝐹)‘(𝑥 + 1)))
13751, 96, 136seqshft2 14069 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))
138 fvco3 7008 . . . . . . . . . . . . 13 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝐾 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝐾) = (𝐺‘(𝐹𝐾)))
13957, 77, 138syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝐹)‘𝐾) = (𝐺‘(𝐹𝐾)))
14017fveq2i 6909 . . . . . . . . . . . . . 14 (𝐹𝐾) = (𝐹‘(𝐹‘(𝑁 + 1)))
141 f1ocnvfv2 7297 . . . . . . . . . . . . . . 15 ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝑁 + 1))
14215, 75, 141syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝑁 + 1))
143140, 142eqtrid 2789 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐾) = (𝑁 + 1))
144143fveq2d 6910 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝐹𝐾)) = (𝐺‘(𝑁 + 1)))
145139, 144eqtr2d 2778 . . . . . . . . . . 11 (𝜑 → (𝐺‘(𝑁 + 1)) = ((𝐺𝐹)‘𝐾))
146145adantr 480 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝐺‘(𝑁 + 1)) = ((𝐺𝐹)‘𝐾))
147137, 146oveq12d 7449 . . . . . . . . 9 ((𝜑𝐾 ∈ (𝑀...𝑁)) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) + ((𝐺𝐹)‘𝐾)))
14895, 147eqtr4d 2780 . . . . . . . 8 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
14987, 148syldan 591 . . . . . . 7 ((𝜑𝐾 = 𝑀) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
15083seqeq1d 14048 . . . . . . . . 9 ((𝜑𝐾 = 𝑀) → seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)))
151150fveq1d 6908 . . . . . . . 8 ((𝜑𝐾 = 𝑀) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
152151oveq1d 7446 . . . . . . 7 ((𝜑𝐾 = 𝑀) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
15382, 149, 1523eqtrd 2781 . . . . . 6 ((𝜑𝐾 = 𝑀) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
154 eluzel2 12883 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
15513, 154syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
156 elfzuz 13560 . . . . . . . . . . 11 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ (ℤ‘(𝑀 + 1)))
157 eluzp1m1 12904 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
158155, 156, 157syl2an 596 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐾 − 1) ∈ (ℤ𝑀))
159 eluzelz 12888 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
16013, 159syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
161160zcnd 12723 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
162 ax-1cn 11213 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
163 pncan 11514 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
164161, 162, 163sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
165 peano2zm 12660 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
16677, 78, 1653syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℤ)
167 elfzuz3 13561 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (𝑀...(𝑁 + 1)) → (𝑁 + 1) ∈ (ℤ𝐾))
16877, 167syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 + 1) ∈ (ℤ𝐾))
169112zcnd 12723 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 ∈ ℂ)
170 npcan 11517 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
171169, 162, 170sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
172171fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
173168, 172eleqtrrd 2844 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ (ℤ‘((𝐾 − 1) + 1)))
174 eluzp1m1 12904 . . . . . . . . . . . . . . . . . . 19 (((𝐾 − 1) ∈ ℤ ∧ (𝑁 + 1) ∈ (ℤ‘((𝐾 − 1) + 1))) → ((𝑁 + 1) − 1) ∈ (ℤ‘(𝐾 − 1)))
175166, 173, 174syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 + 1) − 1) ∈ (ℤ‘(𝐾 − 1)))
176164, 175eqeltrrd 2842 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(𝐾 − 1)))
177 fzss2 13604 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
178176, 177syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
179178sselda 3983 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
180179, 101syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑥) ∈ (𝑀...𝑁))
181180fvresd 6926 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐽𝑥)))
182179, 110syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
183 elfzm11 13635 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥𝑥 < 𝐾)))
184155, 112, 183syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥𝑥 < 𝐾)))
185184biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝑥 ∈ ℤ ∧ 𝑀𝑥𝑥 < 𝐾))
186185simp3d 1145 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 < 𝐾)
187 iftrue 4531 . . . . . . . . . . . . . . . . 17 (𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = 𝑥)
188187fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹𝑥))
189186, 188syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹𝑥))
190182, 189eqtrd 2777 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑥) = (𝐹𝑥))
191190fveq2d 6910 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽𝑥)) = (𝐺‘(𝐹𝑥)))
192181, 191eqtr2d 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐹𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
193 peano2uz 12943 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑁 + 1) ∈ (ℤ‘(𝐾 − 1)))
194 fzss2 13604 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1)))
195176, 193, 1943syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1)))
196195sselda 3983 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
197 fvco3 7008 . . . . . . . . . . . . . 14 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
19857, 197sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
199196, 198syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
200179, 128syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
201192, 199, 2003eqtr4d 2787 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥))
202201adantlr 715 . . . . . . . . . 10 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥))
203158, 202seqfveq 14067 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)))
204 fzp1ss 13615 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
20513, 154, 2043syl 18 . . . . . . . . . . 11 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
206205sselda 3983 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
207206, 148syldan 591 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
208203, 207oveq12d 7449 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))))
209196, 61syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
210209adantlr 715 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
21110adantlr 715 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
212158, 210, 211seqcl 14063 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) ∈ 𝑆)
21359, 77ffvelcdmd 7105 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝐹)‘𝐾) ∈ 𝐶)
21414, 213sseldd 3984 . . . . . . . . . . 11 (𝜑 → ((𝐺𝐹)‘𝐾) ∈ 𝑆)
215214adantr 480 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐺𝐹)‘𝐾) ∈ 𝑆)
21694sselda 3983 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
217216, 62syldan 591 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
21853, 217, 48seqcl 14063 . . . . . . . . . . 11 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆)
219206, 218syldan 591 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆)
220212, 215, 2193jca 1129 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆))
22112caovassg 7631 . . . . . . . . 9 ((𝜑 ∧ ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))))
222220, 221syldan 591 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))))
2231, 14fssd 6753 . . . . . . . . . . . . . . . 16 (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝑆)
224 fssres 6774 . . . . . . . . . . . . . . . 16 ((𝐺:(𝑀...(𝑁 + 1))⟶𝑆 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆)
225223, 3, 224sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆)
226 fco 6760 . . . . . . . . . . . . . . 15 (((𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆)
227225, 20, 226syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆)
228227ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
229179, 228syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
230229adantlr 715 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
231158, 230, 211seqcl 14063 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆)
232 elfzuz3 13561 . . . . . . . . . . . 12 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ𝐾))
233232adantl 481 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈ (ℤ𝐾))
234100, 228syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
235234adantlr 715 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
236233, 235, 211seqcl 14063 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆)
237223, 75ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝐺‘(𝑁 + 1)) ∈ 𝑆)
238237adantr 480 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘(𝑁 + 1)) ∈ 𝑆)
239231, 236, 2383jca 1129 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆))
24012caovassg 7631 . . . . . . . . 9 ((𝜑 ∧ ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))))
241239, 240syldan 591 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))))
242208, 222, 2413eqtr4d 2787 . . . . . . 7 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))))
243 seqm1 14060 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , (𝐺𝐹))‘𝐾) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)))
244155, 156, 243syl2an 596 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘𝐾) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)))
245244oveq1d 7446 . . . . . . 7 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))))
24612adantlr 715 . . . . . . . . . 10 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
247 elfzelz 13564 . . . . . . . . . . . . . . 15 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ)
248247adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℤ)
249248zcnd 12723 . . . . . . . . . . . . 13 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℂ)
250249, 162, 170sylancl 586 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐾 − 1) + 1) = 𝐾)
251250fveq2d 6910 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
252233, 251eleqtrrd 2844 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
253228adantlr 715 . . . . . . . . . 10 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
254211, 246, 252, 158, 253seqsplit 14076 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)))
255250seqeq1d 14048 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)))
256255fveq1d 6908 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
257256oveq2d 7447 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)))
258254, 257eqtrd 2777 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)))
259258oveq1d 7446 . . . . . . 7 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))))
260242, 245, 2593eqtr4d 2787 . . . . . 6 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
261153, 260jaodan 960 . . . . 5 ((𝜑 ∧ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
26266, 261syldan 591 . . . 4 ((𝜑𝐾 ∈ (𝑀...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
26363, 262eqtrd 2777 . . 3 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
26413adantr 480 . . . . 5 ((𝜑𝐾 = (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑀))
265 seqp1 14057 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺𝐹))‘𝑁) + ((𝐺𝐹)‘(𝑁 + 1))))
266264, 265syl 17 . . . 4 ((𝜑𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺𝐹))‘𝑁) + ((𝐺𝐹)‘(𝑁 + 1))))
267110adantl 481 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
268 elfzelz 13564 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
269268zred 12722 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
270269adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
271160zred 12722 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
272271adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ)
273 peano2re 11434 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
274272, 273syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈ ℝ)
275 elfzle2 13568 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑁) → 𝑥𝑁)
276275adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝑁)
277272ltp1d 12198 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑁 < (𝑁 + 1))
278270, 272, 274, 276, 277lelttrd 11419 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1))
279278adantlr 715 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1))
280 simplr 769 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 = (𝑁 + 1))
281279, 280breqtrrd 5171 . . . . . . . . . . 11 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < 𝐾)
282281, 188syl 17 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹𝑥))
283267, 282eqtrd 2777 . . . . . . . . 9 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽𝑥) = (𝐹𝑥))
284283fveq2d 6910 . . . . . . . 8 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐹𝑥)))
285269adantl 481 . . . . . . . . . . 11 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
286285, 281gtned 11396 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾𝑥)
28757ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
288 fzelp1 13616 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
289288adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
290287, 289ffvelcdmd 7105 . . . . . . . . . . . . . 14 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ (𝑀...(𝑁 + 1)))
29113ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑀))
292 elfzp1 13614 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑀) → ((𝐹𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹𝑥) ∈ (𝑀...𝑁) ∨ (𝐹𝑥) = (𝑁 + 1))))
293291, 292syl 17 . . . . . . . . . . . . . 14 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹𝑥) ∈ (𝑀...𝑁) ∨ (𝐹𝑥) = (𝑁 + 1))))
294290, 293mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) ∈ (𝑀...𝑁) ∨ (𝐹𝑥) = (𝑁 + 1)))
295294ord 865 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹𝑥) ∈ (𝑀...𝑁) → (𝐹𝑥) = (𝑁 + 1)))
29615ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
297 f1ocnvfv 7298 . . . . . . . . . . . . . 14 ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐹𝑥) = (𝑁 + 1) → (𝐹‘(𝑁 + 1)) = 𝑥))
298296, 289, 297syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) = (𝑁 + 1) → (𝐹‘(𝑁 + 1)) = 𝑥))
29917eqeq1i 2742 . . . . . . . . . . . . 13 (𝐾 = 𝑥 ↔ (𝐹‘(𝑁 + 1)) = 𝑥)
300298, 299imbitrrdi 252 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) = (𝑁 + 1) → 𝐾 = 𝑥))
301295, 300syld 47 . . . . . . . . . . 11 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹𝑥) ∈ (𝑀...𝑁) → 𝐾 = 𝑥))
302301necon1ad 2957 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 → (𝐹𝑥) ∈ (𝑀...𝑁)))
303286, 302mpd 15 . . . . . . . . 9 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ (𝑀...𝑁))
304303fvresd 6926 . . . . . . . 8 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
305284, 304eqtr2d 2778 . . . . . . 7 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
30657, 288, 197syl2an 596 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
307306adantlr 715 . . . . . . 7 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
308128adantlr 715 . . . . . . 7 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
309305, 307, 3083eqtr4d 2787 . . . . . 6 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥))
310264, 309seqfveq 14067 . . . . 5 ((𝜑𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺𝐹))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
311 fvco3 7008 . . . . . . . 8 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1))))
31257, 75, 311syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1))))
313312adantr 480 . . . . . 6 ((𝜑𝐾 = (𝑁 + 1)) → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1))))
314 simpr 484 . . . . . . . . . 10 ((𝜑𝐾 = (𝑁 + 1)) → 𝐾 = (𝑁 + 1))
31517, 314eqtr3id 2791 . . . . . . . . 9 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝑁 + 1)) = (𝑁 + 1))
316315fveq2d 6910 . . . . . . . 8 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝐹‘(𝑁 + 1)))
317142adantr 480 . . . . . . . 8 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝑁 + 1))
318316, 317eqtr3d 2779 . . . . . . 7 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝑁 + 1)) = (𝑁 + 1))
319318fveq2d 6910 . . . . . 6 ((𝜑𝐾 = (𝑁 + 1)) → (𝐺‘(𝐹‘(𝑁 + 1))) = (𝐺‘(𝑁 + 1)))
320313, 319eqtrd 2777 . . . . 5 ((𝜑𝐾 = (𝑁 + 1)) → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1)))
321310, 320oveq12d 7449 . . . 4 ((𝜑𝐾 = (𝑁 + 1)) → ((seq𝑀( + , (𝐺𝐹))‘𝑁) + ((𝐺𝐹)‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
322266, 321eqtrd 2777 . . 3 ((𝜑𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
323 elfzp1 13614 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
32413, 323syl 17 . . . 4 (𝜑 → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
32577, 324mpbid 232 . . 3 (𝜑 → (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))
326263, 322, 325mpjaodan 961 . 2 (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
327 seqp1 14057 . . 3 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1))))
32813, 327syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1))))
32947, 326, 3283eqtr4d 2787 1 (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  ccnv 5684  cres 5687  ccom 5689   Fn wfn 6556  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cz 12613  cuz 12878  ...cfz 13547  seqcseq 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043
This theorem is referenced by:  seqf1o  14084
  Copyright terms: Public domain W3C validator