Proof of Theorem seqf1olem2
| Step | Hyp | Ref
| Expression |
| 1 | | seqf1olem.6 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝐶) |
| 2 | 1 | ffnd 6737 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn (𝑀...(𝑁 + 1))) |
| 3 | | fzssp1 13607 |
. . . . . . . . 9
⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) |
| 4 | | fnssres 6691 |
. . . . . . . . 9
⊢ ((𝐺 Fn (𝑀...(𝑁 + 1)) ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁)) |
| 5 | 2, 3, 4 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁)) |
| 6 | | fzfid 14014 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 7 | | fnfi 9218 |
. . . . . . . 8
⊢ (((𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin) |
| 9 | 8 | elexd 3504 |
. . . . . 6
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ V) |
| 10 | | seqf1o.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 11 | | seqf1o.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 12 | | seqf1o.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 13 | | seqf1o.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 14 | | seqf1o.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| 15 | | seqf1olem.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) |
| 16 | | seqf1olem.7 |
. . . . . . . . 9
⊢ 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)))) |
| 17 | | seqf1olem.8 |
. . . . . . . . 9
⊢ 𝐾 = (◡𝐹‘(𝑁 + 1)) |
| 18 | 10, 11, 12, 13, 14, 15, 1, 16, 17 | seqf1olem1 14082 |
. . . . . . . 8
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 19 | | f1of 6848 |
. . . . . . . 8
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 21 | | fex2 7958 |
. . . . . . 7
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V) |
| 22 | 20, 6, 6, 21 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ V) |
| 23 | 9, 22 | jca 511 |
. . . . 5
⊢ (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V)) |
| 24 | | seqf1olem.9 |
. . . . 5
⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) |
| 25 | | fssres 6774 |
. . . . . . 7
⊢ ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) |
| 26 | 1, 3, 25 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) |
| 27 | 18, 26 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)) |
| 28 | | f1oeq1 6836 |
. . . . . . . 8
⊢ (𝑓 = 𝐽 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
| 29 | | feq1 6716 |
. . . . . . . 8
⊢ (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)) |
| 30 | 28, 29 | bi2anan9r 639 |
. . . . . . 7
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶))) |
| 31 | | coeq1 5868 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔 ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓)) |
| 32 | | coeq2 5869 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐽 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) |
| 33 | 31, 32 | sylan9eq 2797 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (𝑔 ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) |
| 34 | 33 | seqeq3d 14050 |
. . . . . . . . 9
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))) |
| 35 | 34 | fveq1d 6908 |
. . . . . . . 8
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 36 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → 𝑔 = (𝐺 ↾ (𝑀...𝑁))) |
| 37 | 36 | seqeq3d 14050 |
. . . . . . . . 9
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))) |
| 38 | 37 | fveq1d 6908 |
. . . . . . . 8
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)) |
| 39 | 35, 38 | eqeq12d 2753 |
. . . . . . 7
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))) |
| 40 | 30, 39 | imbi12d 344 |
. . . . . 6
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)))) |
| 41 | 40 | spc2gv 3600 |
. . . . 5
⊢ (((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)))) |
| 42 | 23, 24, 27, 41 | syl3c 66 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)) |
| 43 | | fvres 6925 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺‘𝑥)) |
| 44 | 43 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺‘𝑥)) |
| 45 | 13, 44 | seqfveq 14067 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 46 | 42, 45 | eqtrd 2777 |
. . 3
⊢ (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 47 | 46 | oveq1d 7446 |
. 2
⊢ (𝜑 → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 48 | 10 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 49 | 12 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 50 | | elfzuz3 13561 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 51 | 50 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 52 | | eluzp1p1 12906 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝑁 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 53 | 51, 52 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 54 | | elfzuz 13560 |
. . . . . 6
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 55 | 54 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 56 | | f1of 6848 |
. . . . . . . . . 10
⊢ (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 57 | 15, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 58 | | fco 6760 |
. . . . . . . . 9
⊢ ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶 ∧ 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝐶) |
| 59 | 1, 57, 58 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝐶) |
| 60 | 59, 14 | fssd 6753 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝑆) |
| 61 | 60 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 62 | 61 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 63 | 48, 49, 53, 55, 62 | seqsplit 14076 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) |
| 64 | | elfzp12 13643 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
| 65 | 64 | biimpa 476 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) |
| 66 | 13, 65 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) |
| 67 | | seqeq1 14045 |
. . . . . . . . . . 11
⊢ (𝐾 = 𝑀 → seq𝐾( + , (𝐺 ∘ 𝐹)) = seq𝑀( + , (𝐺 ∘ 𝐹))) |
| 68 | 67 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝐾 = 𝑀 → seq𝑀( + , (𝐺 ∘ 𝐹)) = seq𝐾( + , (𝐺 ∘ 𝐹))) |
| 69 | 68 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝐾 = 𝑀 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = (seq𝐾( + , (𝐺 ∘ 𝐹))‘𝐾)) |
| 70 | | f1ocnv 6860 |
. . . . . . . . . . . . 13
⊢ (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → ◡𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) |
| 71 | | f1of 6848 |
. . . . . . . . . . . . 13
⊢ (◡𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → ◡𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 72 | 15, 70, 71 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 73 | | peano2uz 12943 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
| 74 | | eluzfz2 13572 |
. . . . . . . . . . . . 13
⊢ ((𝑁 + 1) ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 75 | 13, 73, 74 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 76 | 72, 75 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘(𝑁 + 1)) ∈ (𝑀...(𝑁 + 1))) |
| 77 | 17, 76 | eqeltrid 2845 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (𝑀...(𝑁 + 1))) |
| 78 | | elfzelz 13564 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ ℤ) |
| 79 | | seq1 14055 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℤ → (seq𝐾( + , (𝐺 ∘ 𝐹))‘𝐾) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 80 | 77, 78, 79 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝐾( + , (𝐺 ∘ 𝐹))‘𝐾) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 81 | 69, 80 | sylan9eqr 2799 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 82 | 81 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) |
| 83 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → 𝐾 = 𝑀) |
| 84 | | eluzfz1 13571 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 85 | 13, 84 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 86 | 85 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 87 | 83, 86 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → 𝐾 ∈ (𝑀...𝑁)) |
| 88 | 11 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 89 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐶 ⊆ 𝑆) |
| 90 | 59 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝐶) |
| 91 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...(𝑁 + 1))) |
| 92 | | peano2uz 12943 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾 + 1) ∈
(ℤ≥‘𝑀)) |
| 93 | | fzss1 13603 |
. . . . . . . . . . 11
⊢ ((𝐾 + 1) ∈
(ℤ≥‘𝑀) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 94 | 55, 92, 93 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 95 | 48, 88, 49, 53, 89, 90, 91, 94 | seqf1olem2a 14081 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 96 | | 1zzd 12648 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 1 ∈ ℤ) |
| 97 | | elfzuz 13560 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 98 | | fzss1 13603 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| 99 | 77, 97, 98 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| 100 | 99 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 101 | 20 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
| 102 | 100, 101 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
| 103 | 102 | fvresd 6926 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
| 104 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → (𝑘 < 𝐾 ↔ 𝑥 < 𝐾)) |
| 105 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → 𝑘 = 𝑥) |
| 106 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1)) |
| 107 | 104, 105,
106 | ifbieq12d 4554 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑥 → if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)) = if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) |
| 108 | 107 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 109 | | fvex 6919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) ∈ V |
| 110 | 108, 16, 109 | fvmpt 7016 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑀...𝑁) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 111 | 100, 110 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 112 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 113 | 112 | zred 12722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℝ) |
| 115 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ ℤ) |
| 116 | 115 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℤ) |
| 117 | 116 | zred 12722 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℝ) |
| 118 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐾...𝑁) → 𝐾 ≤ 𝑥) |
| 119 | 118 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝐾 ≤ 𝑥) |
| 120 | 114, 117,
119 | lensymd 11412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ¬ 𝑥 < 𝐾) |
| 121 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = (𝑥 + 1)) |
| 122 | 121 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1))) |
| 123 | 120, 122 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1))) |
| 124 | 111, 123 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐽‘𝑥) = (𝐹‘(𝑥 + 1))) |
| 125 | 124 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐺‘(𝐽‘𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 126 | 103, 125 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 127 | | fvco3 7008 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 128 | 20, 127 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 129 | 100, 128 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 130 | | fzp1elp1 13617 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑁) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 131 | 100, 130 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 132 | | fvco3 7008 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 133 | 57, 132 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 134 | 131, 133 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ∘ 𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 135 | 126, 129,
134 | 3eqtr4d 2787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ∘ 𝐹)‘(𝑥 + 1))) |
| 136 | 135 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ∘ 𝐹)‘(𝑥 + 1))) |
| 137 | 51, 96, 136 | seqshft2 14069 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) |
| 138 | | fvco3 7008 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝐾 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝐾) = (𝐺‘(𝐹‘𝐾))) |
| 139 | 57, 77, 138 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝐾) = (𝐺‘(𝐹‘𝐾))) |
| 140 | 17 | fveq2i 6909 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐾) = (𝐹‘(◡𝐹‘(𝑁 + 1))) |
| 141 | | f1ocnvfv2 7297 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝑁 + 1)) |
| 142 | 15, 75, 141 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝑁 + 1)) |
| 143 | 140, 142 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐾) = (𝑁 + 1)) |
| 144 | 143 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(𝐹‘𝐾)) = (𝐺‘(𝑁 + 1))) |
| 145 | 139, 144 | eqtr2d 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘(𝑁 + 1)) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 146 | 145 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐺‘(𝑁 + 1)) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 147 | 137, 146 | oveq12d 7449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 148 | 95, 147 | eqtr4d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 149 | 87, 148 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 150 | 83 | seqeq1d 14048 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))) |
| 151 | 150 | fveq1d 6908 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 152 | 151 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 153 | 82, 149, 152 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 154 | | eluzel2 12883 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 155 | 13, 154 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 156 | | elfzuz 13560 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) |
| 157 | | eluzp1m1 12904 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘(𝑀 + 1))) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
| 158 | 155, 156,
157 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
| 159 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 160 | 13, 159 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 161 | 160 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 162 | | ax-1cn 11213 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
| 163 | | pncan 11514 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 164 | 161, 162,
163 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 165 | | peano2zm 12660 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
| 166 | 77, 78, 165 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐾 − 1) ∈ ℤ) |
| 167 | | elfzuz3 13561 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐾 ∈ (𝑀...(𝑁 + 1)) → (𝑁 + 1) ∈
(ℤ≥‘𝐾)) |
| 168 | 77, 167 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝐾)) |
| 169 | 112 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 170 | | npcan 11517 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) |
| 171 | 169, 162,
170 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 172 | 171 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(ℤ≥‘((𝐾 − 1) + 1)) =
(ℤ≥‘𝐾)) |
| 173 | 168, 172 | eleqtrrd 2844 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘((𝐾 − 1) + 1))) |
| 174 | | eluzp1m1 12904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 − 1) ∈ ℤ ∧
(𝑁 + 1) ∈
(ℤ≥‘((𝐾 − 1) + 1))) → ((𝑁 + 1) − 1) ∈
(ℤ≥‘(𝐾 − 1))) |
| 175 | 166, 173,
174 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 + 1) − 1) ∈
(ℤ≥‘(𝐾 − 1))) |
| 176 | 164, 175 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
| 177 | | fzss2 13604 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
| 178 | 176, 177 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
| 179 | 178 | sselda 3983 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁)) |
| 180 | 179, 101 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
| 181 | 180 | fvresd 6926 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
| 182 | 179, 110 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 183 | | elfzm11 13635 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾))) |
| 184 | 155, 112,
183 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾))) |
| 185 | 184 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾)) |
| 186 | 185 | simp3d 1145 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 < 𝐾) |
| 187 | | iftrue 4531 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = 𝑥) |
| 188 | 187 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘𝑥)) |
| 189 | 186, 188 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘𝑥)) |
| 190 | 182, 189 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑥) = (𝐹‘𝑥)) |
| 191 | 190 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
| 192 | 181, 191 | eqtr2d 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐹‘𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 193 | | peano2uz 12943 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘(𝐾 − 1)) → (𝑁 + 1) ∈
(ℤ≥‘(𝐾 − 1))) |
| 194 | | fzss2 13604 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 + 1) ∈
(ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 195 | 176, 193,
194 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 196 | 195 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 197 | | fvco3 7008 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 198 | 57, 197 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 199 | 196, 198 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 200 | 179, 128 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 201 | 192, 199,
200 | 3eqtr4d 2787 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥)) |
| 202 | 201 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥)) |
| 203 | 158, 202 | seqfveq 14067 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1))) |
| 204 | | fzp1ss 13615 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 205 | 13, 154, 204 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 206 | 205 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) |
| 207 | 206, 148 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 208 | 203, 207 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))) |
| 209 | 196, 61 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 210 | 209 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 211 | 10 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 212 | 158, 210,
211 | seqcl 14063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) ∈ 𝑆) |
| 213 | 59, 77 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝐶) |
| 214 | 14, 213 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆) |
| 215 | 214 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆) |
| 216 | 94 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 217 | 216, 62 | syldan 591 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 218 | 53, 217, 48 | seqcl 14063 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆) |
| 219 | 206, 218 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆) |
| 220 | 212, 215,
219 | 3jca 1129 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆)) |
| 221 | 12 | caovassg 7631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))))) |
| 222 | 220, 221 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))))) |
| 223 | 1, 14 | fssd 6753 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝑆) |
| 224 | | fssres 6774 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:(𝑀...(𝑁 + 1))⟶𝑆 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆) |
| 225 | 223, 3, 224 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆) |
| 226 | | fco 6760 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆 ∧ 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆) |
| 227 | 225, 20, 226 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆) |
| 228 | 227 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 229 | 179, 228 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 230 | 229 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 231 | 158, 230,
211 | seqcl 14063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆) |
| 232 | | elfzuz3 13561 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 233 | 232 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 234 | 100, 228 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 235 | 234 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 236 | 233, 235,
211 | seqcl 14063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆) |
| 237 | 223, 75 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘(𝑁 + 1)) ∈ 𝑆) |
| 238 | 237 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘(𝑁 + 1)) ∈ 𝑆) |
| 239 | 231, 236,
238 | 3jca 1129 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆)) |
| 240 | 12 | caovassg 7631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))) |
| 241 | 239, 240 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))) |
| 242 | 208, 222,
241 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
| 243 | | seqm1 14060 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 244 | 155, 156,
243 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 245 | 244 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) |
| 246 | 12 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 247 | | elfzelz 13564 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ) |
| 248 | 247 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℤ) |
| 249 | 248 | zcnd 12723 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℂ) |
| 250 | 249, 162,
170 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐾 − 1) + 1) = 𝐾) |
| 251 | 250 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) →
(ℤ≥‘((𝐾 − 1) + 1)) =
(ℤ≥‘𝐾)) |
| 252 | 233, 251 | eleqtrrd 2844 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈
(ℤ≥‘((𝐾 − 1) + 1))) |
| 253 | 228 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 254 | 211, 246,
252, 158, 253 | seqsplit 14076 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))) |
| 255 | 250 | seqeq1d 14048 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))) |
| 256 | 255 | fveq1d 6908 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 257 | 256 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))) |
| 258 | 254, 257 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))) |
| 259 | 258 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
| 260 | 242, 245,
259 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 261 | 153, 260 | jaodan 960 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 262 | 66, 261 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 263 | 63, 262 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 264 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 265 | | seqp1 14057 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) + ((𝐺 ∘ 𝐹)‘(𝑁 + 1)))) |
| 266 | 264, 265 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) + ((𝐺 ∘ 𝐹)‘(𝑁 + 1)))) |
| 267 | 110 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 268 | | elfzelz 13564 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) |
| 269 | 268 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 270 | 269 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
| 271 | 160 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 272 | 271 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ) |
| 273 | | peano2re 11434 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
| 274 | 272, 273 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈ ℝ) |
| 275 | | elfzle2 13568 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ≤ 𝑁) |
| 276 | 275 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝑁) |
| 277 | 272 | ltp1d 12198 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 < (𝑁 + 1)) |
| 278 | 270, 272,
274, 276, 277 | lelttrd 11419 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1)) |
| 279 | 278 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1)) |
| 280 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 = (𝑁 + 1)) |
| 281 | 279, 280 | breqtrrd 5171 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < 𝐾) |
| 282 | 281, 188 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘𝑥)) |
| 283 | 267, 282 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽‘𝑥) = (𝐹‘𝑥)) |
| 284 | 283 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐹‘𝑥))) |
| 285 | 269 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
| 286 | 285, 281 | gtned 11396 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ≠ 𝑥) |
| 287 | 57 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 288 | | fzelp1 13616 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 289 | 288 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 290 | 287, 289 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ (𝑀...(𝑁 + 1))) |
| 291 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 292 | | elfzp1 13614 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝐹‘𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹‘𝑥) ∈ (𝑀...𝑁) ∨ (𝐹‘𝑥) = (𝑁 + 1)))) |
| 293 | 291, 292 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹‘𝑥) ∈ (𝑀...𝑁) ∨ (𝐹‘𝑥) = (𝑁 + 1)))) |
| 294 | 290, 293 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) ∈ (𝑀...𝑁) ∨ (𝐹‘𝑥) = (𝑁 + 1))) |
| 295 | 294 | ord 865 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹‘𝑥) ∈ (𝑀...𝑁) → (𝐹‘𝑥) = (𝑁 + 1))) |
| 296 | 15 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) |
| 297 | | f1ocnvfv 7298 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐹‘𝑥) = (𝑁 + 1) → (◡𝐹‘(𝑁 + 1)) = 𝑥)) |
| 298 | 296, 289,
297 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) = (𝑁 + 1) → (◡𝐹‘(𝑁 + 1)) = 𝑥)) |
| 299 | 17 | eqeq1i 2742 |
. . . . . . . . . . . . 13
⊢ (𝐾 = 𝑥 ↔ (◡𝐹‘(𝑁 + 1)) = 𝑥) |
| 300 | 298, 299 | imbitrrdi 252 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) = (𝑁 + 1) → 𝐾 = 𝑥)) |
| 301 | 295, 300 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹‘𝑥) ∈ (𝑀...𝑁) → 𝐾 = 𝑥)) |
| 302 | 301 | necon1ad 2957 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 ≠ 𝑥 → (𝐹‘𝑥) ∈ (𝑀...𝑁))) |
| 303 | 286, 302 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ (𝑀...𝑁)) |
| 304 | 303 | fvresd 6926 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐹‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
| 305 | 284, 304 | eqtr2d 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹‘𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 306 | 57, 288, 197 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 307 | 306 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 308 | 128 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 309 | 305, 307,
308 | 3eqtr4d 2787 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ∘ 𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥)) |
| 310 | 264, 309 | seqfveq 14067 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 311 | | fvco3 7008 |
. . . . . . . 8
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1)))) |
| 312 | 57, 75, 311 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1)))) |
| 313 | 312 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1)))) |
| 314 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → 𝐾 = (𝑁 + 1)) |
| 315 | 17, 314 | eqtr3id 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (◡𝐹‘(𝑁 + 1)) = (𝑁 + 1)) |
| 316 | 315 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝐹‘(𝑁 + 1))) |
| 317 | 142 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝑁 + 1)) |
| 318 | 316, 317 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐹‘(𝑁 + 1)) = (𝑁 + 1)) |
| 319 | 318 | fveq2d 6910 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐺‘(𝐹‘(𝑁 + 1))) = (𝐺‘(𝑁 + 1))) |
| 320 | 313, 319 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
| 321 | 310, 320 | oveq12d 7449 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) + ((𝐺 ∘ 𝐹)‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 322 | 266, 321 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 323 | | elfzp1 13614 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
| 324 | 13, 323 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
| 325 | 77, 324 | mpbid 232 |
. . 3
⊢ (𝜑 → (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))) |
| 326 | 263, 322,
325 | mpjaodan 961 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 327 | | seqp1 14057 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 328 | 13, 327 | syl 17 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 329 | 47, 326, 328 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1))) |