MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2 Structured version   Visualization version   GIF version

Theorem seqf1olem2 13136
Description: Lemma for seqf1o 13137. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1olem.5 (𝜑𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
seqf1olem.6 (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝐶)
seqf1olem.7 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))))
seqf1olem.8 𝐾 = (𝐹‘(𝑁 + 1))
seqf1olem.9 (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
Assertion
Ref Expression
seqf1olem2 (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1)))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑔,𝑘,𝑥,𝑦,𝑧   𝑓,𝑀,𝑔,𝑘,𝑥,𝑦,𝑧   + ,𝑓,𝑔,𝑘,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝑁,𝑔,𝑘,𝑥,𝑦,𝑧   𝑘,𝐾,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐽(𝑘)   𝐾(𝑓,𝑔)

Proof of Theorem seqf1olem2
StepHypRef Expression
1 seqf1olem.6 . . . . . . . . . 10 (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝐶)
21ffnd 6280 . . . . . . . . 9 (𝜑𝐺 Fn (𝑀...(𝑁 + 1)))
3 fzssp1 12678 . . . . . . . . 9 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
4 fnssres 6238 . . . . . . . . 9 ((𝐺 Fn (𝑀...(𝑁 + 1)) ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁))
52, 3, 4sylancl 582 . . . . . . . 8 (𝜑 → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁))
6 fzfid 13068 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ∈ Fin)
7 fnfi 8508 . . . . . . . 8 (((𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin)
85, 6, 7syl2anc 581 . . . . . . 7 (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin)
9 elex 3430 . . . . . . 7 ((𝐺 ↾ (𝑀...𝑁)) ∈ Fin → (𝐺 ↾ (𝑀...𝑁)) ∈ V)
108, 9syl 17 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ V)
11 seqf1o.1 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12 seqf1o.2 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
13 seqf1o.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
14 seqf1o.4 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
15 seqf1o.5 . . . . . . . . 9 (𝜑𝐶𝑆)
16 seqf1olem.5 . . . . . . . . 9 (𝜑𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
17 seqf1olem.7 . . . . . . . . 9 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))))
18 seqf1olem.8 . . . . . . . . 9 𝐾 = (𝐹‘(𝑁 + 1))
1911, 12, 13, 14, 15, 16, 1, 17, 18seqf1olem1 13135 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
20 f1of 6379 . . . . . . . 8 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2119, 20syl 17 . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
22 fex2 7384 . . . . . . 7 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V)
2321, 6, 6, 22syl3anc 1496 . . . . . 6 (𝜑𝐽 ∈ V)
2410, 23jca 509 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V))
25 seqf1olem.9 . . . . 5 (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
26 fssres 6308 . . . . . . 7 ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)
271, 3, 26sylancl 582 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)
2819, 27jca 509 . . . . 5 (𝜑 → (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶))
29 f1oeq1 6368 . . . . . . . 8 (𝑓 = 𝐽 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
30 feq1 6260 . . . . . . . 8 (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶))
3129, 30bi2anan9r 632 . . . . . . 7 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)))
32 coeq1 5513 . . . . . . . . . . 11 (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓))
33 coeq2 5514 . . . . . . . . . . 11 (𝑓 = 𝐽 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))
3432, 33sylan9eq 2882 . . . . . . . . . 10 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (𝑔𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))
3534seqeq3d 13104 . . . . . . . . 9 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , (𝑔𝑓)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)))
3635fveq1d 6436 . . . . . . . 8 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
37 simpl 476 . . . . . . . . . 10 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → 𝑔 = (𝐺 ↾ (𝑀...𝑁)))
3837seqeq3d 13104 . . . . . . . . 9 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝐺 ↾ (𝑀...𝑁))))
3938fveq1d 6436 . . . . . . . 8 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))
4036, 39eqeq12d 2841 . . . . . . 7 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)))
4131, 40imbi12d 336 . . . . . 6 ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))))
4241spc2gv 3514 . . . . 5 (((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V) → (∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))))
4324, 25, 28, 42syl3c 66 . . . 4 (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))
44 fvres 6453 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺𝑥))
4544adantl 475 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺𝑥))
4614, 45seqfveq 13120 . . . 4 (𝜑 → (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
4743, 46eqtrd 2862 . . 3 (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
4847oveq1d 6921 . 2 (𝜑 → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1))))
4911adantlr 708 . . . . 5 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
5013adantlr 708 . . . . 5 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
51 elfzuz3 12633 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
5251adantl 475 . . . . . 6 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝐾))
53 eluzp1p1 11995 . . . . . 6 (𝑁 ∈ (ℤ𝐾) → (𝑁 + 1) ∈ (ℤ‘(𝐾 + 1)))
5452, 53syl 17 . . . . 5 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈ (ℤ‘(𝐾 + 1)))
55 elfzuz 12632 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
5655adantl 475 . . . . 5 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (ℤ𝑀))
57 f1of 6379 . . . . . . . . . 10 (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
5816, 57syl 17 . . . . . . . . 9 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
59 fco 6296 . . . . . . . . 9 ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝐶)
601, 58, 59syl2anc 581 . . . . . . . 8 (𝜑 → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝐶)
6160, 15fssd 6293 . . . . . . 7 (𝜑 → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝑆)
6261ffvelrnda 6609 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
6362adantlr 708 . . . . 5 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
6449, 50, 54, 56, 63seqsplit 13129 . . . 4 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))))
65 elfzp12 12714 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
6665biimpa 470 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁)))
6714, 66sylan 577 . . . . 5 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁)))
68 seqeq1 13099 . . . . . . . . . . 11 (𝐾 = 𝑀 → seq𝐾( + , (𝐺𝐹)) = seq𝑀( + , (𝐺𝐹)))
6968eqcomd 2832 . . . . . . . . . 10 (𝐾 = 𝑀 → seq𝑀( + , (𝐺𝐹)) = seq𝐾( + , (𝐺𝐹)))
7069fveq1d 6436 . . . . . . . . 9 (𝐾 = 𝑀 → (seq𝑀( + , (𝐺𝐹))‘𝐾) = (seq𝐾( + , (𝐺𝐹))‘𝐾))
71 f1ocnv 6391 . . . . . . . . . . . . 13 (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
72 f1of 6379 . . . . . . . . . . . . 13 (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
7316, 71, 723syl 18 . . . . . . . . . . . 12 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
74 peano2uz 12024 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
75 eluzfz2 12643 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
7614, 74, 753syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
7773, 76ffvelrnd 6610 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝑁 + 1)) ∈ (𝑀...(𝑁 + 1)))
7818, 77syl5eqel 2911 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...(𝑁 + 1)))
79 elfzelz 12636 . . . . . . . . . 10 (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ ℤ)
80 seq1 13109 . . . . . . . . . 10 (𝐾 ∈ ℤ → (seq𝐾( + , (𝐺𝐹))‘𝐾) = ((𝐺𝐹)‘𝐾))
8178, 79, 803syl 18 . . . . . . . . 9 (𝜑 → (seq𝐾( + , (𝐺𝐹))‘𝐾) = ((𝐺𝐹)‘𝐾))
8270, 81sylan9eqr 2884 . . . . . . . 8 ((𝜑𝐾 = 𝑀) → (seq𝑀( + , (𝐺𝐹))‘𝐾) = ((𝐺𝐹)‘𝐾))
8382oveq1d 6921 . . . . . . 7 ((𝜑𝐾 = 𝑀) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))))
84 simpr 479 . . . . . . . . 9 ((𝜑𝐾 = 𝑀) → 𝐾 = 𝑀)
85 eluzfz1 12642 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8614, 85syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝑀...𝑁))
8786adantr 474 . . . . . . . . 9 ((𝜑𝐾 = 𝑀) → 𝑀 ∈ (𝑀...𝑁))
8884, 87eqeltrd 2907 . . . . . . . 8 ((𝜑𝐾 = 𝑀) → 𝐾 ∈ (𝑀...𝑁))
8912adantlr 708 . . . . . . . . . 10 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
9015adantr 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝐶𝑆)
9160adantr 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝐺𝐹):(𝑀...(𝑁 + 1))⟶𝐶)
9278adantr 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...(𝑁 + 1)))
93 peano2uz 12024 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
94 fzss1 12674 . . . . . . . . . . 11 ((𝐾 + 1) ∈ (ℤ𝑀) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1)))
9556, 93, 943syl 18 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1)))
9649, 89, 50, 54, 90, 91, 92, 95seqf1olem2a 13134 . . . . . . . . 9 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) + ((𝐺𝐹)‘𝐾)))
97 1zzd 11737 . . . . . . . . . . 11 ((𝜑𝐾 ∈ (𝑀...𝑁)) → 1 ∈ ℤ)
98 elfzuz 12632 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ (ℤ𝑀))
99 fzss1 12674 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
10078, 98, 993syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾...𝑁) ⊆ (𝑀...𝑁))
101100sselda 3828 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
10221ffvelrnda 6609 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐽𝑥) ∈ (𝑀...𝑁))
103101, 102syldan 587 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐽𝑥) ∈ (𝑀...𝑁))
104 fvres 6453 . . . . . . . . . . . . . . 15 ((𝐽𝑥) ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐽𝑥)))
105103, 104syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐽𝑥)))
106 breq1 4877 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (𝑘 < 𝐾𝑥 < 𝐾))
107 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥𝑘 = 𝑥)
108 oveq1 6913 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
109106, 107, 108ifbieq12d 4334 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑥 → if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)) = if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))
110109fveq2d 6438 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
111 fvex 6447 . . . . . . . . . . . . . . . . . 18 (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) ∈ V
112110, 17, 111fvmpt 6530 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑀...𝑁) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
113101, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
114 elfzle1 12638 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾...𝑁) → 𝐾𝑥)
115114adantl 475 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝐾𝑥)
11678, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℤ)
117116zred 11811 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℝ)
118117adantr 474 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℝ)
119 elfzelz 12636 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ ℤ)
120119adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℤ)
121120zred 11811 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℝ)
122118, 121lenltd 10503 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐾𝑥 ↔ ¬ 𝑥 < 𝐾))
123115, 122mpbid 224 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ¬ 𝑥 < 𝐾)
124 iffalse 4316 . . . . . . . . . . . . . . . . . 18 𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = (𝑥 + 1))
125124fveq2d 6438 . . . . . . . . . . . . . . . . 17 𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1)))
126123, 125syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1)))
127113, 126eqtrd 2862 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐽𝑥) = (𝐹‘(𝑥 + 1)))
128127fveq2d 6438 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐺‘(𝐽𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1))))
129105, 128eqtrd 2862 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1))))
130 fvco3 6523 . . . . . . . . . . . . . . 15 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
13121, 130sylan 577 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
132101, 131syldan 587 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
133 fzp1elp1 12688 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑁) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1)))
134101, 133syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1)))
135 fvco3 6523 . . . . . . . . . . . . . . 15 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1))))
13658, 135sylan 577 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1))))
137134, 136syldan 587 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐾...𝑁)) → ((𝐺𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1))))
138129, 132, 1373eqtr4d 2872 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺𝐹)‘(𝑥 + 1)))
139138adantlr 708 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺𝐹)‘(𝑥 + 1)))
14052, 97, 139seqshft2 13122 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))
141 fvco3 6523 . . . . . . . . . . . . 13 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝐾 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝐾) = (𝐺‘(𝐹𝐾)))
14258, 78, 141syl2anc 581 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝐹)‘𝐾) = (𝐺‘(𝐹𝐾)))
14318fveq2i 6437 . . . . . . . . . . . . . 14 (𝐹𝐾) = (𝐹‘(𝐹‘(𝑁 + 1)))
144 f1ocnvfv2 6789 . . . . . . . . . . . . . . 15 ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝑁 + 1))
14516, 76, 144syl2anc 581 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝑁 + 1))
146143, 145syl5eq 2874 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐾) = (𝑁 + 1))
147146fveq2d 6438 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝐹𝐾)) = (𝐺‘(𝑁 + 1)))
148142, 147eqtr2d 2863 . . . . . . . . . . 11 (𝜑 → (𝐺‘(𝑁 + 1)) = ((𝐺𝐹)‘𝐾))
149148adantr 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (𝐺‘(𝑁 + 1)) = ((𝐺𝐹)‘𝐾))
150140, 149oveq12d 6924 . . . . . . . . 9 ((𝜑𝐾 ∈ (𝑀...𝑁)) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) + ((𝐺𝐹)‘𝐾)))
15196, 150eqtr4d 2865 . . . . . . . 8 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
15288, 151syldan 587 . . . . . . 7 ((𝜑𝐾 = 𝑀) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
15384seqeq1d 13102 . . . . . . . . 9 ((𝜑𝐾 = 𝑀) → seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)))
154153fveq1d 6436 . . . . . . . 8 ((𝜑𝐾 = 𝑀) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
155154oveq1d 6921 . . . . . . 7 ((𝜑𝐾 = 𝑀) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
15683, 152, 1553eqtrd 2866 . . . . . 6 ((𝜑𝐾 = 𝑀) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
157 eluzel2 11974 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
15814, 157syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
159 elfzuz 12632 . . . . . . . . . . 11 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ (ℤ‘(𝑀 + 1)))
160 eluzp1m1 11993 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
161158, 159, 160syl2an 591 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐾 − 1) ∈ (ℤ𝑀))
162 eluzelz 11979 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
16314, 162syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
164163zcnd 11812 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
165 ax-1cn 10311 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
166 pncan 10608 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
167164, 165, 166sylancl 582 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
168 peano2zm 11749 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
16978, 79, 1683syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℤ)
170 elfzuz3 12633 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (𝑀...(𝑁 + 1)) → (𝑁 + 1) ∈ (ℤ𝐾))
17178, 170syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 + 1) ∈ (ℤ𝐾))
172116zcnd 11812 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 ∈ ℂ)
173 npcan 10612 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
174172, 165, 173sylancl 582 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
175174fveq2d 6438 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
176171, 175eleqtrrd 2910 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ (ℤ‘((𝐾 − 1) + 1)))
177 eluzp1m1 11993 . . . . . . . . . . . . . . . . . . 19 (((𝐾 − 1) ∈ ℤ ∧ (𝑁 + 1) ∈ (ℤ‘((𝐾 − 1) + 1))) → ((𝑁 + 1) − 1) ∈ (ℤ‘(𝐾 − 1)))
178169, 176, 177syl2anc 581 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 + 1) − 1) ∈ (ℤ‘(𝐾 − 1)))
179167, 178eqeltrrd 2908 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(𝐾 − 1)))
180 fzss2 12675 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
181179, 180syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
182181sselda 3828 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
183182, 102syldan 587 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑥) ∈ (𝑀...𝑁))
184183, 104syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = (𝐺‘(𝐽𝑥)))
185182, 112syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
186 elfzm11 12706 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥𝑥 < 𝐾)))
187158, 116, 186syl2anc 581 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥𝑥 < 𝐾)))
188187biimpa 470 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝑥 ∈ ℤ ∧ 𝑀𝑥𝑥 < 𝐾))
189188simp3d 1180 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 < 𝐾)
190 iftrue 4313 . . . . . . . . . . . . . . . . 17 (𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = 𝑥)
191190fveq2d 6438 . . . . . . . . . . . . . . . 16 (𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹𝑥))
192189, 191syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹𝑥))
193185, 192eqtrd 2862 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑥) = (𝐹𝑥))
194193fveq2d 6438 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽𝑥)) = (𝐺‘(𝐹𝑥)))
195184, 194eqtr2d 2863 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐹𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
196 peano2uz 12024 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑁 + 1) ∈ (ℤ‘(𝐾 − 1)))
197 fzss2 12675 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1)))
198179, 196, 1973syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1)))
199198sselda 3828 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
200 fvco3 6523 . . . . . . . . . . . . . 14 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
20158, 200sylan 577 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
202199, 201syldan 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
203182, 131syldan 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
204195, 202, 2033eqtr4d 2872 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥))
205204adantlr 708 . . . . . . . . . 10 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥))
206161, 205seqfveq 13120 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)))
207 fzp1ss 12686 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
20814, 157, 2073syl 18 . . . . . . . . . . 11 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
209208sselda 3828 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
210209, 151syldan 587 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
211206, 210oveq12d 6924 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))))
212199, 62syldan 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
213212adantlr 708 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
21411adantlr 708 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
215161, 213, 214seqcl 13116 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) ∈ 𝑆)
21660, 78ffvelrnd 6610 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝐹)‘𝐾) ∈ 𝐶)
21715, 216sseldd 3829 . . . . . . . . . . 11 (𝜑 → ((𝐺𝐹)‘𝐾) ∈ 𝑆)
218217adantr 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐺𝐹)‘𝐾) ∈ 𝑆)
21995sselda 3828 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
220219, 63syldan 587 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → ((𝐺𝐹)‘𝑥) ∈ 𝑆)
22154, 220, 49seqcl 13116 . . . . . . . . . . 11 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆)
222209, 221syldan 587 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆)
223215, 218, 2223jca 1164 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆))
22413caovassg 7093 . . . . . . . . 9 ((𝜑 ∧ ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))))
225223, 224syldan 587 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + (((𝐺𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1)))))
2261, 15fssd 6293 . . . . . . . . . . . . . . . 16 (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝑆)
227 fssres 6308 . . . . . . . . . . . . . . . 16 ((𝐺:(𝑀...(𝑁 + 1))⟶𝑆 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆)
228226, 3, 227sylancl 582 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆)
229 fco 6296 . . . . . . . . . . . . . . 15 (((𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆)
230228, 21, 229syl2anc 581 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆)
231230ffvelrnda 6609 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
232182, 231syldan 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
233232adantlr 708 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
234161, 233, 214seqcl 13116 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆)
235 elfzuz3 12633 . . . . . . . . . . . 12 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ𝐾))
236235adantl 475 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈ (ℤ𝐾))
237101, 231syldan 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
238237adantlr 708 . . . . . . . . . . 11 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
239236, 238, 214seqcl 13116 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆)
240226, 76ffvelrnd 6610 . . . . . . . . . . 11 (𝜑 → (𝐺‘(𝑁 + 1)) ∈ 𝑆)
241240adantr 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘(𝑁 + 1)) ∈ 𝑆)
242234, 239, 2413jca 1164 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆))
24313caovassg 7093 . . . . . . . . 9 ((𝜑 ∧ ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))))
244242, 243syldan 587 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))))
245211, 225, 2443eqtr4d 2872 . . . . . . 7 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))))
246 seqm1 13113 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , (𝐺𝐹))‘𝐾) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)))
247158, 159, 246syl2an 591 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘𝐾) = ((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)))
248247oveq1d 6921 . . . . . . 7 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , (𝐺𝐹))‘(𝐾 − 1)) + ((𝐺𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))))
24913adantlr 708 . . . . . . . . . 10 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
250 elfzelz 12636 . . . . . . . . . . . . . . 15 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ)
251250adantl 475 . . . . . . . . . . . . . 14 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℤ)
252251zcnd 11812 . . . . . . . . . . . . 13 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℂ)
253252, 165, 173sylancl 582 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐾 − 1) + 1) = 𝐾)
254253fveq2d 6438 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
255236, 254eleqtrrd 2910 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
256231adantlr 708 . . . . . . . . . 10 (((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆)
257214, 249, 255, 161, 256seqsplit 13129 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)))
258253seqeq1d 13102 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)))
259258fveq1d 6436 . . . . . . . . . 10 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
260259oveq2d 6922 . . . . . . . . 9 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)))
261257, 260eqtrd 2862 . . . . . . . 8 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)))
262261oveq1d 6921 . . . . . . 7 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))))
263245, 248, 2623eqtr4d 2872 . . . . . 6 ((𝜑𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
264156, 263jaodan 987 . . . . 5 ((𝜑 ∧ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
26567, 264syldan 587 . . . 4 ((𝜑𝐾 ∈ (𝑀...𝑁)) → ((seq𝑀( + , (𝐺𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
26664, 265eqtrd 2862 . . 3 ((𝜑𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
26714adantr 474 . . . . 5 ((𝜑𝐾 = (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑀))
268 seqp1 13111 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺𝐹))‘𝑁) + ((𝐺𝐹)‘(𝑁 + 1))))
269267, 268syl 17 . . . 4 ((𝜑𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺𝐹))‘𝑁) + ((𝐺𝐹)‘(𝑁 + 1))))
270112adantl 475 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))))
271 elfzelz 12636 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
272271zred 11811 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
273272adantl 475 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
274163zred 11811 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
275274adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ)
276 peano2re 10529 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
277275, 276syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈ ℝ)
278 elfzle2 12639 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑁) → 𝑥𝑁)
279278adantl 475 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝑁)
280275ltp1d 11285 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑁 < (𝑁 + 1))
281273, 275, 277, 279, 280lelttrd 10515 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1))
282281adantlr 708 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1))
283 simplr 787 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 = (𝑁 + 1))
284282, 283breqtrrd 4902 . . . . . . . . . . 11 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < 𝐾)
285284, 191syl 17 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹𝑥))
286270, 285eqtrd 2862 . . . . . . . . 9 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽𝑥) = (𝐹𝑥))
287286fveq2d 6438 . . . . . . . 8 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐹𝑥)))
288272adantl 475 . . . . . . . . . . 11 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
289288, 284gtned 10492 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾𝑥)
29058ad2antrr 719 . . . . . . . . . . . . . . 15 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)))
291 fzelp1 12687 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
292291adantl 475 . . . . . . . . . . . . . . 15 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...(𝑁 + 1)))
293290, 292ffvelrnd 6610 . . . . . . . . . . . . . 14 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ (𝑀...(𝑁 + 1)))
29414ad2antrr 719 . . . . . . . . . . . . . . 15 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑀))
295 elfzp1 12685 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑀) → ((𝐹𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹𝑥) ∈ (𝑀...𝑁) ∨ (𝐹𝑥) = (𝑁 + 1))))
296294, 295syl 17 . . . . . . . . . . . . . 14 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹𝑥) ∈ (𝑀...𝑁) ∨ (𝐹𝑥) = (𝑁 + 1))))
297293, 296mpbid 224 . . . . . . . . . . . . 13 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) ∈ (𝑀...𝑁) ∨ (𝐹𝑥) = (𝑁 + 1)))
298297ord 897 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹𝑥) ∈ (𝑀...𝑁) → (𝐹𝑥) = (𝑁 + 1)))
29916ad2antrr 719 . . . . . . . . . . . . . 14 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))
300 f1ocnvfv 6790 . . . . . . . . . . . . . 14 ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐹𝑥) = (𝑁 + 1) → (𝐹‘(𝑁 + 1)) = 𝑥))
301299, 292, 300syl2anc 581 . . . . . . . . . . . . 13 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) = (𝑁 + 1) → (𝐹‘(𝑁 + 1)) = 𝑥))
30218eqeq1i 2831 . . . . . . . . . . . . 13 (𝐾 = 𝑥 ↔ (𝐹‘(𝑁 + 1)) = 𝑥)
303301, 302syl6ibr 244 . . . . . . . . . . . 12 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) = (𝑁 + 1) → 𝐾 = 𝑥))
304298, 303syld 47 . . . . . . . . . . 11 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹𝑥) ∈ (𝑀...𝑁) → 𝐾 = 𝑥))
305304necon1ad 3017 . . . . . . . . . 10 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 → (𝐹𝑥) ∈ (𝑀...𝑁)))
306289, 305mpd 15 . . . . . . . . 9 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ (𝑀...𝑁))
307 fvres 6453 . . . . . . . . 9 ((𝐹𝑥) ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
308306, 307syl 17 . . . . . . . 8 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
309287, 308eqtr2d 2863 . . . . . . 7 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
31058, 291, 200syl2an 591 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
311310adantlr 708 . . . . . . 7 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
312131adantlr 708 . . . . . . 7 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽𝑥)))
313309, 311, 3123eqtr4d 2872 . . . . . 6 (((𝜑𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥))
314267, 313seqfveq 13120 . . . . 5 ((𝜑𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺𝐹))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))
315 fvco3 6523 . . . . . . . 8 ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1))))
31658, 76, 315syl2anc 581 . . . . . . 7 (𝜑 → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1))))
317316adantr 474 . . . . . 6 ((𝜑𝐾 = (𝑁 + 1)) → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1))))
318 simpr 479 . . . . . . . . . 10 ((𝜑𝐾 = (𝑁 + 1)) → 𝐾 = (𝑁 + 1))
31918, 318syl5eqr 2876 . . . . . . . . 9 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝑁 + 1)) = (𝑁 + 1))
320319fveq2d 6438 . . . . . . . 8 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝐹‘(𝑁 + 1)))
321145adantr 474 . . . . . . . 8 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝐹‘(𝑁 + 1))) = (𝑁 + 1))
322320, 321eqtr3d 2864 . . . . . . 7 ((𝜑𝐾 = (𝑁 + 1)) → (𝐹‘(𝑁 + 1)) = (𝑁 + 1))
323322fveq2d 6438 . . . . . 6 ((𝜑𝐾 = (𝑁 + 1)) → (𝐺‘(𝐹‘(𝑁 + 1))) = (𝐺‘(𝑁 + 1)))
324317, 323eqtrd 2862 . . . . 5 ((𝜑𝐾 = (𝑁 + 1)) → ((𝐺𝐹)‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1)))
325314, 324oveq12d 6924 . . . 4 ((𝜑𝐾 = (𝑁 + 1)) → ((seq𝑀( + , (𝐺𝐹))‘𝑁) + ((𝐺𝐹)‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
326269, 325eqtrd 2862 . . 3 ((𝜑𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
327 elfzp1 12685 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
32814, 327syl 17 . . . 4 (𝜑 → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
32978, 328mpbid 224 . . 3 (𝜑 → (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))
330266, 326, 329mpjaodan 988 . 2 (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))
331 seqp1 13111 . . 3 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1))))
33214, 331syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1))))
33348, 330, 3323eqtr4d 2872 1 (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880  w3a 1113  wal 1656   = wceq 1658  wcel 2166  wne 3000  Vcvv 3415  wss 3799  ifcif 4307   class class class wbr 4874  cmpt 4953  ccnv 5342  cres 5345  ccom 5347   Fn wfn 6119  wf 6120  1-1-ontowf1o 6123  cfv 6124  (class class class)co 6906  Fincfn 8223  cc 10251  cr 10252  1c1 10254   + caddc 10256   < clt 10392  cle 10393  cmin 10586  cz 11705  cuz 11969  ...cfz 12620  seqcseq 13096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762  df-seq 13097
This theorem is referenced by:  seqf1o  13137
  Copyright terms: Public domain W3C validator