MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsosr Structured version   Visualization version   GIF version

Theorem ltsosr 10708
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsosr <R Or R

Proof of Theorem ltsosr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10670 . . 3 R = ((P × P) / ~R )
2 breq1 5056 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R [⟨𝑧, 𝑤⟩] ~R ))
3 eqeq1 2741 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝑓 = [⟨𝑧, 𝑤⟩] ~R ))
4 breq2 5057 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝑓))
53, 4orbi12d 919 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)))
65notbid 321 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)))
72, 6bibi12d 349 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓))))
8 breq2 5057 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R 𝑔))
9 eqeq2 2749 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 = [⟨𝑧, 𝑤⟩] ~R𝑓 = 𝑔))
10 breq1 5056 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R 𝑓𝑔 <R 𝑓))
119, 10orbi12d 919 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓) ↔ (𝑓 = 𝑔𝑔 <R 𝑓)))
1211notbid 321 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓) ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓)))
138, 12bibi12d 349 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)) ↔ (𝑓 <R 𝑔 ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓))))
14 ltsrpr 10691 . . . 4 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧))
15 addclpr 10632 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
16 addclpr 10632 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
17 ltsopr 10646 . . . . . . . 8 <P Or P
18 sotric 5496 . . . . . . . 8 ((<P Or P ∧ ((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
1917, 18mpan 690 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
2015, 16, 19syl2an 599 . . . . . 6 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
2120an42s 661 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
22 enreceq 10680 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
23 ltsrpr 10691 . . . . . . . . 9 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))
24 addcompr 10635 . . . . . . . . . 10 (𝑧 +P 𝑦) = (𝑦 +P 𝑧)
25 addcompr 10635 . . . . . . . . . 10 (𝑤 +P 𝑥) = (𝑥 +P 𝑤)
2624, 25breq12i 5062 . . . . . . . . 9 ((𝑧 +P 𝑦)<P (𝑤 +P 𝑥) ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))
2723, 26bitri 278 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))
2827a1i 11 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)))
2922, 28orbi12d 919 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
3029notbid 321 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
3121, 30bitr4d 285 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
3214, 31syl5bb 286 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
331, 7, 13, 322ecoptocl 8490 . 2 ((𝑓R𝑔R) → (𝑓 <R 𝑔 ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓)))
342anbi1d 633 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )))
35 breq1 5056 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R [⟨𝑣, 𝑢⟩] ~R ))
3634, 35imbi12d 348 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ((([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
37 breq1 5056 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R [⟨𝑣, 𝑢⟩] ~R ))
388, 37anbi12d 634 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R )))
3938imbi1d 345 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
40 breq2 5057 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = → (𝑔 <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R ))
4140anbi2d 632 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R )))
42 breq2 5057 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → (𝑓 <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R ))
4341, 42imbi12d 348 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → (((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R )))
44 ovex 7246 . . . . . . . . . 10 (𝑥 +P 𝑤) ∈ V
45 ovex 7246 . . . . . . . . . 10 (𝑦 +P 𝑧) ∈ V
46 ltapr 10659 . . . . . . . . . 10 (P → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
47 vex 3412 . . . . . . . . . 10 𝑢 ∈ V
48 addcompr 10635 . . . . . . . . . 10 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
4944, 45, 46, 47, 48caovord2 7420 . . . . . . . . 9 (𝑢P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢)))
50 addasspr 10636 . . . . . . . . . 10 ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢))
51 addasspr 10636 . . . . . . . . . 10 ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢))
5250, 51breq12i 5062 . . . . . . . . 9 (((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)))
5349, 52bitrdi 290 . . . . . . . 8 (𝑢P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
5414, 53syl5bb 286 . . . . . . 7 (𝑢P → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
55 ltsrpr 10691 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣))
56 ltapr 10659 . . . . . . . 8 (𝑦P → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
5755, 56syl5bb 286 . . . . . . 7 (𝑦P → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
5854, 57bi2anan9r 640 . . . . . 6 ((𝑦P𝑢P) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))))
59 ltrelpr 10612 . . . . . . . 8 <P ⊆ (P × P)
6017, 59sotri 5992 . . . . . . 7 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))
61 dmplp 10626 . . . . . . . . 9 dom +P = (P × P)
62 0npr 10606 . . . . . . . . 9 ¬ ∅ ∈ P
63 ltapr 10659 . . . . . . . . 9 (𝑤P → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
6461, 59, 62, 63ndmovordi 7399 . . . . . . . 8 ((𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)) → (𝑥 +P 𝑢)<P (𝑦 +P 𝑣))
65 vex 3412 . . . . . . . . . 10 𝑥 ∈ V
66 vex 3412 . . . . . . . . . 10 𝑤 ∈ V
67 addasspr 10636 . . . . . . . . . 10 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
6865, 66, 47, 48, 67caov12 7436 . . . . . . . . 9 (𝑥 +P (𝑤 +P 𝑢)) = (𝑤 +P (𝑥 +P 𝑢))
69 vex 3412 . . . . . . . . . 10 𝑦 ∈ V
70 vex 3412 . . . . . . . . . 10 𝑣 ∈ V
7169, 66, 70, 48, 67caov12 7436 . . . . . . . . 9 (𝑦 +P (𝑤 +P 𝑣)) = (𝑤 +P (𝑦 +P 𝑣))
7268, 71breq12i 5062 . . . . . . . 8 ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)))
73 ltsrpr 10691 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣))
7464, 72, 733imtr4i 295 . . . . . . 7 ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )
7560, 74syl 17 . . . . . 6 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )
7658, 75syl6bi 256 . . . . 5 ((𝑦P𝑢P) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
7776ad2ant2l 746 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
78773adant2 1133 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
791, 36, 39, 43, 783ecoptocl 8491 . 2 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
8033, 79isso2i 5503 1 <R Or R
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  cop 4547   class class class wbr 5053   Or wor 5467  (class class class)co 7213  [cec 8389  Pcnp 10473   +P cpp 10475  <P cltp 10477   ~R cer 10478  Rcnr 10479   <R cltr 10485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-ni 10486  df-pli 10487  df-mi 10488  df-lti 10489  df-plpq 10522  df-mpq 10523  df-ltpq 10524  df-enq 10525  df-nq 10526  df-erq 10527  df-plq 10528  df-mq 10529  df-1nq 10530  df-rq 10531  df-ltnq 10532  df-np 10595  df-plp 10597  df-ltp 10599  df-enr 10669  df-nr 10670  df-ltr 10673
This theorem is referenced by:  1ne0sr  10710  addgt0sr  10718  sqgt0sr  10720  supsrlem  10725  axpre-lttri  10779  axpre-lttrn  10780
  Copyright terms: Public domain W3C validator