MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeq Structured version   Visualization version   GIF version

Theorem uspgr2wlkeq 29434
Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
uspgr2wlkeq ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐡   𝑦,𝐺   𝑦,𝑁

Proof of Theorem uspgr2wlkeq
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 3anan32 1095 . . 3 ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
21a1i 11 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦))))
3 wlkeq 29422 . . . 4 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦))))
433expa 1116 . . 3 (((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦))))
543adant1 1128 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦))))
6 fzofzp1 13747 . . . . . . . . . . . 12 (π‘₯ ∈ (0..^𝑁) β†’ (π‘₯ + 1) ∈ (0...𝑁))
76adantl 481 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ π‘₯ ∈ (0..^𝑁)) β†’ (π‘₯ + 1) ∈ (0...𝑁))
8 fveq2 6891 . . . . . . . . . . . . 13 (𝑦 = (π‘₯ + 1) β†’ ((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΄)β€˜(π‘₯ + 1)))
9 fveq2 6891 . . . . . . . . . . . . 13 (𝑦 = (π‘₯ + 1) β†’ ((2nd β€˜π΅)β€˜π‘¦) = ((2nd β€˜π΅)β€˜(π‘₯ + 1)))
108, 9eqeq12d 2743 . . . . . . . . . . . 12 (𝑦 = (π‘₯ + 1) β†’ (((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ↔ ((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1))))
1110adantl 481 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ π‘₯ ∈ (0..^𝑁)) ∧ 𝑦 = (π‘₯ + 1)) β†’ (((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ↔ ((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1))))
127, 11rspcdv 3599 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ π‘₯ ∈ (0..^𝑁)) β†’ (βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ ((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1))))
1312impancom 451 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) β†’ (π‘₯ ∈ (0..^𝑁) β†’ ((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1))))
1413ralrimiv 3140 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) β†’ βˆ€π‘₯ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1)))
15 fvoveq1 7437 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ ((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΄)β€˜(π‘₯ + 1)))
16 fvoveq1 7437 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ ((2nd β€˜π΅)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1)))
1715, 16eqeq12d 2743 . . . . . . . . 9 (𝑦 = π‘₯ β†’ (((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1)) ↔ ((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1))))
1817cbvralvw 3229 . . . . . . . 8 (βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1)) ↔ βˆ€π‘₯ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(π‘₯ + 1)) = ((2nd β€˜π΅)β€˜(π‘₯ + 1)))
1914, 18sylibr 233 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) β†’ βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1)))
20 fzossfz 13669 . . . . . . . . . 10 (0..^𝑁) βŠ† (0...𝑁)
21 ssralv 4046 . . . . . . . . . 10 ((0..^𝑁) βŠ† (0...𝑁) β†’ (βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)))
2220, 21mp1i 13 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)))
23 r19.26 3106 . . . . . . . . . . 11 (βˆ€π‘¦ ∈ (0..^𝑁)(((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ∧ ((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1))) ↔ (βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1))))
24 preq12 4735 . . . . . . . . . . . . 13 ((((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ∧ ((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1))) β†’ {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})
2524a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ ((((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ∧ ((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1))) β†’ {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
2625ralimdv 3164 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁)(((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ∧ ((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1))) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
2723, 26biimtrrid 242 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ ((βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1))) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
2827expd 415 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ (βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1)) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})))
2922, 28syld 47 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ (βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1)) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})))
3029imp 406 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) β†’ (βˆ€π‘¦ ∈ (0..^𝑁)((2nd β€˜π΄)β€˜(𝑦 + 1)) = ((2nd β€˜π΅)β€˜(𝑦 + 1)) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
3119, 30mpd 15 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})
3231ex 412 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
33 uspgrupgr 28965 . . . . . . . 8 (𝐺 ∈ USPGraph β†’ 𝐺 ∈ UPGraph)
34 eqid 2727 . . . . . . . . . 10 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
35 eqid 2727 . . . . . . . . . 10 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
36 eqid 2727 . . . . . . . . . 10 (1st β€˜π΄) = (1st β€˜π΄)
37 eqid 2727 . . . . . . . . . 10 (2nd β€˜π΄) = (2nd β€˜π΄)
3834, 35, 36, 37upgrwlkcompim 29431 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Walksβ€˜πΊ)) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}))
3938ex 412 . . . . . . . 8 (𝐺 ∈ UPGraph β†’ (𝐴 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))})))
4033, 39syl 17 . . . . . . 7 (𝐺 ∈ USPGraph β†’ (𝐴 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))})))
41 eqid 2727 . . . . . . . . . 10 (1st β€˜π΅) = (1st β€˜π΅)
42 eqid 2727 . . . . . . . . . 10 (2nd β€˜π΅) = (2nd β€˜π΅)
4334, 35, 41, 42upgrwlkcompim 29431 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
4443ex 412 . . . . . . . 8 (𝐺 ∈ UPGraph β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})))
4533, 44syl 17 . . . . . . 7 (𝐺 ∈ USPGraph β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})))
46 oveq2 7422 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜(1st β€˜π΅)) = 𝑁 β†’ (0..^(β™―β€˜(1st β€˜π΅))) = (0..^𝑁))
4746eqcoms 2735 . . . . . . . . . . . . . . . . . 18 (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (0..^(β™―β€˜(1st β€˜π΅))) = (0..^𝑁))
4847raleqdv 3320 . . . . . . . . . . . . . . . . 17 (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ↔ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
49 oveq2 7422 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜(1st β€˜π΄)) = 𝑁 β†’ (0..^(β™―β€˜(1st β€˜π΄))) = (0..^𝑁))
5049eqcoms 2735 . . . . . . . . . . . . . . . . . 18 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (0..^(β™―β€˜(1st β€˜π΄))) = (0..^𝑁))
5150raleqdv 3320 . . . . . . . . . . . . . . . . 17 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} ↔ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}))
5248, 51bi2anan9r 638 . . . . . . . . . . . . . . . 16 ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ ((βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) ↔ (βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))})))
53 r19.26 3106 . . . . . . . . . . . . . . . . 17 (βˆ€π‘¦ ∈ (0..^𝑁)(((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) ↔ (βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}))
54 eqeq2 2739 . . . . . . . . . . . . . . . . . . . . 21 ({((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} ↔ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}))
55 eqeq2 2739 . . . . . . . . . . . . . . . . . . . . . . 23 ({((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ↔ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
5655eqcoms 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ↔ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
5756biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
5854, 57biimtrdi 252 . . . . . . . . . . . . . . . . . . . 20 ({((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))
5958com13 88 . . . . . . . . . . . . . . . . . . 19 (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} β†’ ({((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))
6059imp 406 . . . . . . . . . . . . . . . . . 18 ((((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) β†’ ({((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
6160ral2imi 3080 . . . . . . . . . . . . . . . . 17 (βˆ€π‘¦ ∈ (0..^𝑁)(((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
6253, 61sylbir 234 . . . . . . . . . . . . . . . 16 ((βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
6352, 62biimtrdi 252 . . . . . . . . . . . . . . 15 ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ ((βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))
6463com12 32 . . . . . . . . . . . . . 14 ((βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))
6564ex 412 . . . . . . . . . . . . 13 (βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ (βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))))
66653ad2ant3 1133 . . . . . . . . . . . 12 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}) β†’ (βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))))
6766com12 32 . . . . . . . . . . 11 (βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} β†’ (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))))
68673ad2ant3 1133 . . . . . . . . . 10 (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) β†’ (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))}) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))))
6968imp 406 . . . . . . . . 9 ((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))
7069expd 415 . . . . . . . 8 ((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})) β†’ (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))))
7170a1i 11 . . . . . . 7 (𝐺 ∈ USPGraph β†’ ((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = {((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))}) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘¦ ∈ (0..^(β™―β€˜(1st β€˜π΅)))((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))})) β†’ (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))))
7240, 45, 71syl2and 607 . . . . . 6 (𝐺 ∈ USPGraph β†’ ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)))))))
73723imp1 1345 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁){((2nd β€˜π΄)β€˜π‘¦), ((2nd β€˜π΄)β€˜(𝑦 + 1))} = {((2nd β€˜π΅)β€˜π‘¦), ((2nd β€˜π΅)β€˜(𝑦 + 1))} β†’ βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦))))
74 eqcom 2734 . . . . . . 7 (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) ↔ ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)))
7535uspgrf1oedg 28960 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1-ontoβ†’(Edgβ€˜πΊ))
76 f1of1 6832 . . . . . . . . . . . 12 ((iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1-ontoβ†’(Edgβ€˜πΊ) β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’(Edgβ€˜πΊ))
7775, 76syl 17 . . . . . . . . . . 11 (𝐺 ∈ USPGraph β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’(Edgβ€˜πΊ))
78 eqidd 2728 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph β†’ (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ))
79 eqidd 2728 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph β†’ dom (iEdgβ€˜πΊ) = dom (iEdgβ€˜πΊ))
80 edgval 28836 . . . . . . . . . . . . . 14 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
8180eqcomi 2736 . . . . . . . . . . . . 13 ran (iEdgβ€˜πΊ) = (Edgβ€˜πΊ)
8281a1i 11 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph β†’ ran (iEdgβ€˜πΊ) = (Edgβ€˜πΊ))
8378, 79, 82f1eq123d 6825 . . . . . . . . . . 11 (𝐺 ∈ USPGraph β†’ ((iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’ran (iEdgβ€˜πΊ) ↔ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’(Edgβ€˜πΊ)))
8477, 83mpbird 257 . . . . . . . . . 10 (𝐺 ∈ USPGraph β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’ran (iEdgβ€˜πΊ))
85843ad2ant1 1131 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’ran (iEdgβ€˜πΊ))
8685adantr 480 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’ran (iEdgβ€˜πΊ))
8734, 35, 36, 37wlkelwrd 29421 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)))
8834, 35, 41, 42wlkelwrd 29421 . . . . . . . . . . . . . . 15 (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)))
89 oveq2 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (0..^𝑁) = (0..^(β™―β€˜(1st β€˜π΄))))
9089eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(β™―β€˜(1st β€˜π΄)))))
91 wrdsymbcl 14495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑦 ∈ (0..^(β™―β€˜(1st β€˜π΄)))) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))
9291expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(β™―β€˜(1st β€˜π΄))) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
9390, 92biimtrdi 252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑦 ∈ (0..^𝑁) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
9493adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (𝑦 ∈ (0..^𝑁) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
9594imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
9695com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
9796adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ ((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
98 oveq2 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (0..^𝑁) = (0..^(β™―β€˜(1st β€˜π΅))))
9998eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(β™―β€˜(1st β€˜π΅)))))
100 wrdsymbcl 14495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑦 ∈ (0..^(β™―β€˜(1st β€˜π΅)))) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))
101100expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(β™―β€˜(1st β€˜π΅))) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
10299, 101biimtrdi 252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (𝑦 ∈ (0..^𝑁) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (𝑦 ∈ (0..^𝑁) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
104103imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
105104com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
106105adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
10797, 106jcad 512 . . . . . . . . . . . . . . . . . . . 20 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
108107ex 412 . . . . . . . . . . . . . . . . . . 19 ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
109108adantr 480 . . . . . . . . . . . . . . . . . 18 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
110109com12 32 . . . . . . . . . . . . . . . . 17 ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
111110adantr 480 . . . . . . . . . . . . . . . 16 (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) β†’ (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
112111imp 406 . . . . . . . . . . . . . . 15 ((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
11387, 88, 112syl2an 595 . . . . . . . . . . . . . 14 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
114113expd 415 . . . . . . . . . . . . 13 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΄)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (𝑦 ∈ (0..^𝑁) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
115114expd 415 . . . . . . . . . . . 12 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (𝑦 ∈ (0..^𝑁) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))))
116115imp 406 . . . . . . . . . . 11 (((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (𝑦 ∈ (0..^𝑁) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
1171163adant1 1128 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) β†’ (𝑦 ∈ (0..^𝑁) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))))
118117imp 406 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (𝑦 ∈ (0..^𝑁) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))))
119118imp 406 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ)))
120 f1veqaeq 7261 . . . . . . . 8 (((iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)–1-1β†’ran (iEdgβ€˜πΊ) ∧ (((1st β€˜π΄)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ) ∧ ((1st β€˜π΅)β€˜π‘¦) ∈ dom (iEdgβ€˜πΊ))) β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) β†’ ((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
12186, 119, 120syl2an2r 684 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) β†’ ((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
12274, 121biimtrid 241 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) ∧ 𝑦 ∈ (0..^𝑁)) β†’ (((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) β†’ ((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
123122ralimdva 3162 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0..^𝑁)((iEdgβ€˜πΊ)β€˜((1st β€˜π΅)β€˜π‘¦)) = ((iEdgβ€˜πΊ)β€˜((1st β€˜π΄)β€˜π‘¦)) β†’ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
12432, 73, 1233syld 60 . . . 4 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) ∧ 𝑁 = (β™―β€˜(1st β€˜π΅))) β†’ (βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦) β†’ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
125124expimpd 453 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) β†’ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦)))
126125pm4.71d 561 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦)) ∧ βˆ€π‘¦ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘¦) = ((1st β€˜π΅)β€˜π‘¦))))
1272, 5, 1263bitr4d 311 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘¦ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘¦) = ((2nd β€˜π΅)β€˜π‘¦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056   βŠ† wss 3944  {cpr 4626  dom cdm 5672  ran crn 5673  βŸΆwf 6538  β€“1-1β†’wf1 6539  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7414  1st c1st 7983  2nd c2nd 7984  0cc0 11124  1c1 11125   + caddc 11127  ...cfz 13502  ..^cfzo 13645  β™―chash 14307  Word cword 14482  Vtxcvtx 28783  iEdgciedg 28784  Edgcedg 28834  UPGraphcupgr 28867  USPGraphcuspgr 28935  Walkscwlks 29384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8716  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9910  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-n0 12489  df-xnn0 12561  df-z 12575  df-uz 12839  df-fz 13503  df-fzo 13646  df-hash 14308  df-word 14483  df-edg 28835  df-uhgr 28845  df-upgr 28869  df-uspgr 28937  df-wlks 29387
This theorem is referenced by:  uspgr2wlkeq2  29435  clwlkclwwlkf1  29794
  Copyright terms: Public domain W3C validator