MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeq Structured version   Visualization version   GIF version

Theorem uspgr2wlkeq 28594
Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
uspgr2wlkeq ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐺   𝑦,𝑁

Proof of Theorem uspgr2wlkeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3anan32 1097 . . 3 ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
21a1i 11 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦))))
3 wlkeq 28582 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
433expa 1118 . . 3 (((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
543adant1 1130 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
6 fzofzp1 13669 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁))
76adantl 482 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁))
8 fveq2 6842 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 1) → ((2nd𝐴)‘𝑦) = ((2nd𝐴)‘(𝑥 + 1)))
9 fveq2 6842 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 1) → ((2nd𝐵)‘𝑦) = ((2nd𝐵)‘(𝑥 + 1)))
108, 9eqeq12d 2752 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 1) → (((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ↔ ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1110adantl 482 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑥 ∈ (0..^𝑁)) ∧ 𝑦 = (𝑥 + 1)) → (((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ↔ ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
127, 11rspcdv 3573 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑥 ∈ (0..^𝑁)) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1312impancom 452 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → (𝑥 ∈ (0..^𝑁) → ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1413ralrimiv 3142 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑥 ∈ (0..^𝑁)((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1)))
15 fvoveq1 7380 . . . . . . . . . 10 (𝑦 = 𝑥 → ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐴)‘(𝑥 + 1)))
16 fvoveq1 7380 . . . . . . . . . 10 (𝑦 = 𝑥 → ((2nd𝐵)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑥 + 1)))
1715, 16eqeq12d 2752 . . . . . . . . 9 (𝑦 = 𝑥 → (((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) ↔ ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1817cbvralvw 3225 . . . . . . . 8 (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) ↔ ∀𝑥 ∈ (0..^𝑁)((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1)))
1914, 18sylibr 233 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)))
20 fzossfz 13591 . . . . . . . . . 10 (0..^𝑁) ⊆ (0...𝑁)
21 ssralv 4010 . . . . . . . . . 10 ((0..^𝑁) ⊆ (0...𝑁) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)))
2220, 21mp1i 13 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)))
23 r19.26 3114 . . . . . . . . . . 11 (∀𝑦 ∈ (0..^𝑁)(((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))))
24 preq12 4696 . . . . . . . . . . . . 13 ((((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})
2524a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → ((((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
2625ralimdv 3166 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁)(((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
2723, 26biimtrrid 242 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → ((∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
2827expd 416 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
2922, 28syld 47 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
3029imp 407 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
3119, 30mpd 15 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})
3231ex 413 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
33 uspgrupgr 28127 . . . . . . . 8 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
34 eqid 2736 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
35 eqid 2736 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
36 eqid 2736 . . . . . . . . . 10 (1st𝐴) = (1st𝐴)
37 eqid 2736 . . . . . . . . . 10 (2nd𝐴) = (2nd𝐴)
3834, 35, 36, 37upgrwlkcompim 28591 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Walks‘𝐺)) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}))
3938ex 413 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))})))
4033, 39syl 17 . . . . . . 7 (𝐺 ∈ USPGraph → (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))})))
41 eqid 2736 . . . . . . . . . 10 (1st𝐵) = (1st𝐵)
42 eqid 2736 . . . . . . . . . 10 (2nd𝐵) = (2nd𝐵)
4334, 35, 41, 42upgrwlkcompim 28591 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐵 ∈ (Walks‘𝐺)) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
4443ex 413 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
4533, 44syl 17 . . . . . . 7 (𝐺 ∈ USPGraph → (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
46 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝐵)) = 𝑁 → (0..^(♯‘(1st𝐵))) = (0..^𝑁))
4746eqcoms 2744 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘(1st𝐵)) → (0..^(♯‘(1st𝐵))) = (0..^𝑁))
4847raleqdv 3313 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ↔ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
49 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝐴)) = 𝑁 → (0..^(♯‘(1st𝐴))) = (0..^𝑁))
5049eqcoms 2744 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘(1st𝐴)) → (0..^(♯‘(1st𝐴))) = (0..^𝑁))
5150raleqdv 3313 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘(1st𝐴)) → (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} ↔ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}))
5248, 51bi2anan9r 638 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → ((∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ↔ (∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))})))
53 r19.26 3114 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (0..^𝑁)(((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ↔ (∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}))
54 eqeq2 2748 . . . . . . . . . . . . . . . . . . . . 21 ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} ↔ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
55 eqeq2 2748 . . . . . . . . . . . . . . . . . . . . . . 23 ({((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ↔ ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
5655eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ↔ ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
5756biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
5854, 57syl6bi 252 . . . . . . . . . . . . . . . . . . . 20 ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
5958com13 88 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
6059imp 407 . . . . . . . . . . . . . . . . . 18 ((((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
6160ral2imi 3088 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (0..^𝑁)(((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
6253, 61sylbir 234 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
6352, 62syl6bi 252 . . . . . . . . . . . . . . 15 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → ((∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
6463com12 32 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
6564ex 413 . . . . . . . . . . . . 13 (∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
66653ad2ant3 1135 . . . . . . . . . . . 12 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
6766com12 32 . . . . . . . . . . 11 (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
68673ad2ant3 1135 . . . . . . . . . 10 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
6968imp 407 . . . . . . . . 9 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
7069expd 416 . . . . . . . 8 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
7170a1i 11 . . . . . . 7 (𝐺 ∈ USPGraph → ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))))
7240, 45, 71syl2and 608 . . . . . 6 (𝐺 ∈ USPGraph → ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))))
73723imp1 1347 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
74 eqcom 2743 . . . . . . 7 (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) ↔ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)))
7535uspgrf1oedg 28124 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
76 f1of1 6783 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
7775, 76syl 17 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
78 eqidd 2737 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → (iEdg‘𝐺) = (iEdg‘𝐺))
79 eqidd 2737 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → dom (iEdg‘𝐺) = dom (iEdg‘𝐺))
80 edgval 28000 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
8180eqcomi 2745 . . . . . . . . . . . . 13 ran (iEdg‘𝐺) = (Edg‘𝐺)
8281a1i 11 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → ran (iEdg‘𝐺) = (Edg‘𝐺))
8378, 79, 82f1eq123d 6776 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)))
8477, 83mpbird 256 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺))
85843ad2ant1 1133 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺))
8685adantr 481 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺))
8734, 35, 36, 37wlkelwrd 28581 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)))
8834, 35, 41, 42wlkelwrd 28581 . . . . . . . . . . . . . . 15 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)))
89 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 = (♯‘(1st𝐴)) → (0..^𝑁) = (0..^(♯‘(1st𝐴))))
9089eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 = (♯‘(1st𝐴)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘(1st𝐴)))))
91 wrdsymbcl 14415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ 𝑦 ∈ (0..^(♯‘(1st𝐴)))) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺))
9291expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘(1st𝐴))) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
9390, 92syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘(1st𝐴)) → (𝑦 ∈ (0..^𝑁) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺))))
9493adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺))))
9594imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
9695com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
9796adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐴) ∈ Word dom (iEdg‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
98 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 = (♯‘(1st𝐵)) → (0..^𝑁) = (0..^(♯‘(1st𝐵))))
9998eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘(1st𝐵)))))
100 wrdsymbcl 14415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ 𝑦 ∈ (0..^(♯‘(1st𝐵)))) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))
101100expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘(1st𝐵))) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
10299, 101syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
103102adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
104103imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
105104com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
106105adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐴) ∈ Word dom (iEdg‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
10797, 106jcad 513 . . . . . . . . . . . . . . . . . . . 20 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐴) ∈ Word dom (iEdg‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
108107ex 413 . . . . . . . . . . . . . . . . . . 19 ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
109108adantr 481 . . . . . . . . . . . . . . . . . 18 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
110109com12 32 . . . . . . . . . . . . . . . . 17 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
111110adantr 481 . . . . . . . . . . . . . . . 16 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
112111imp 407 . . . . . . . . . . . . . . 15 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
11387, 88, 112syl2an 596 . . . . . . . . . . . . . 14 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
114113expd 416 . . . . . . . . . . . . 13 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
115114expd 416 . . . . . . . . . . . 12 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))))
116115imp 407 . . . . . . . . . . 11 (((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
1171163adant1 1130 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
118117imp 407 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
119118imp 407 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
120 f1veqaeq 7204 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺) ∧ (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) → ((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
12186, 119, 120syl2an2r 683 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) → ((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
12274, 121biimtrid 241 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) → ((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
123122ralimdva 3164 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
12432, 73, 1233syld 60 . . . 4 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
125124expimpd 454 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
126125pm4.71d 562 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦))))
1272, 5, 1263bitr4d 310 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wss 3910  {cpr 4588  dom cdm 5633  ran crn 5634  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  0cc0 11051  1c1 11052   + caddc 11054  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402  Vtxcvtx 27947  iEdgciedg 27948  Edgcedg 27998  UPGraphcupgr 28031  USPGraphcuspgr 28099  Walkscwlks 28544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-edg 27999  df-uhgr 28009  df-upgr 28033  df-uspgr 28101  df-wlks 28547
This theorem is referenced by:  uspgr2wlkeq2  28595  clwlkclwwlkf1  28954
  Copyright terms: Public domain W3C validator