MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeq Structured version   Visualization version   GIF version

Theorem uspgr2wlkeq 29626
Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
uspgr2wlkeq ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐺   𝑦,𝑁

Proof of Theorem uspgr2wlkeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3anan32 1096 . . 3 ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
21a1i 11 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦))))
3 wlkeq 29614 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
433expa 1118 . . 3 (((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
543adant1 1130 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
6 fzofzp1 13780 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁))
76adantl 481 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁))
8 fveq2 6876 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 1) → ((2nd𝐴)‘𝑦) = ((2nd𝐴)‘(𝑥 + 1)))
9 fveq2 6876 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 1) → ((2nd𝐵)‘𝑦) = ((2nd𝐵)‘(𝑥 + 1)))
108, 9eqeq12d 2751 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 1) → (((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ↔ ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1110adantl 481 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑥 ∈ (0..^𝑁)) ∧ 𝑦 = (𝑥 + 1)) → (((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ↔ ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
127, 11rspcdv 3593 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑥 ∈ (0..^𝑁)) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1312impancom 451 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → (𝑥 ∈ (0..^𝑁) → ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1413ralrimiv 3131 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑥 ∈ (0..^𝑁)((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1)))
15 fvoveq1 7428 . . . . . . . . . 10 (𝑦 = 𝑥 → ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐴)‘(𝑥 + 1)))
16 fvoveq1 7428 . . . . . . . . . 10 (𝑦 = 𝑥 → ((2nd𝐵)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑥 + 1)))
1715, 16eqeq12d 2751 . . . . . . . . 9 (𝑦 = 𝑥 → (((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) ↔ ((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1))))
1817cbvralvw 3220 . . . . . . . 8 (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) ↔ ∀𝑥 ∈ (0..^𝑁)((2nd𝐴)‘(𝑥 + 1)) = ((2nd𝐵)‘(𝑥 + 1)))
1914, 18sylibr 234 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)))
20 fzossfz 13695 . . . . . . . . . 10 (0..^𝑁) ⊆ (0...𝑁)
21 ssralv 4027 . . . . . . . . . 10 ((0..^𝑁) ⊆ (0...𝑁) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)))
2220, 21mp1i 13 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)))
23 r19.26 3098 . . . . . . . . . . 11 (∀𝑦 ∈ (0..^𝑁)(((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))))
24 preq12 4711 . . . . . . . . . . . . 13 ((((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})
2524a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → ((((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
2625ralimdv 3154 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁)(((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
2723, 26biimtrrid 243 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → ((∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1))) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
2827expd 415 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
2922, 28syld 47 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
3029imp 406 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝐴)‘(𝑦 + 1)) = ((2nd𝐵)‘(𝑦 + 1)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
3119, 30mpd 15 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})
3231ex 412 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
33 uspgrupgr 29157 . . . . . . . 8 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
34 eqid 2735 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
35 eqid 2735 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
36 eqid 2735 . . . . . . . . . 10 (1st𝐴) = (1st𝐴)
37 eqid 2735 . . . . . . . . . 10 (2nd𝐴) = (2nd𝐴)
3834, 35, 36, 37upgrwlkcompim 29623 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Walks‘𝐺)) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}))
3938ex 412 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))})))
4033, 39syl 17 . . . . . . 7 (𝐺 ∈ USPGraph → (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))})))
41 eqid 2735 . . . . . . . . . 10 (1st𝐵) = (1st𝐵)
42 eqid 2735 . . . . . . . . . 10 (2nd𝐵) = (2nd𝐵)
4334, 35, 41, 42upgrwlkcompim 29623 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐵 ∈ (Walks‘𝐺)) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
4443ex 412 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
4533, 44syl 17 . . . . . . 7 (𝐺 ∈ USPGraph → (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})))
46 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝐵)) = 𝑁 → (0..^(♯‘(1st𝐵))) = (0..^𝑁))
4746eqcoms 2743 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘(1st𝐵)) → (0..^(♯‘(1st𝐵))) = (0..^𝑁))
4847raleqdv 3305 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ↔ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
49 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝐴)) = 𝑁 → (0..^(♯‘(1st𝐴))) = (0..^𝑁))
5049eqcoms 2743 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘(1st𝐴)) → (0..^(♯‘(1st𝐴))) = (0..^𝑁))
5150raleqdv 3305 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘(1st𝐴)) → (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} ↔ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}))
5248, 51bi2anan9r 639 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → ((∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ↔ (∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))})))
53 r19.26 3098 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (0..^𝑁)(((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ↔ (∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}))
54 eqeq2 2747 . . . . . . . . . . . . . . . . . . . . 21 ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} ↔ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}))
55 eqeq2 2747 . . . . . . . . . . . . . . . . . . . . . . 23 ({((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ↔ ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
5655eqcoms 2743 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ↔ ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
5756biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
5854, 57biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
5958com13 88 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
6059imp 406 . . . . . . . . . . . . . . . . . 18 ((((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → ({((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
6160ral2imi 3075 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (0..^𝑁)(((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
6253, 61sylbir 235 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
6352, 62biimtrdi 253 . . . . . . . . . . . . . . 15 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → ((∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
6463com12 32 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
6564ex 412 . . . . . . . . . . . . 13 (∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
66653ad2ant3 1135 . . . . . . . . . . . 12 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}) → (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
6766com12 32 . . . . . . . . . . 11 (∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
68673ad2ant3 1135 . . . . . . . . . 10 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))}) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
6968imp 406 . . . . . . . . 9 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))
7069expd 415 . . . . . . . 8 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))))
7170a1i 11 . . . . . . 7 (𝐺 ∈ USPGraph → ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐴)))((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = {((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))}) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺) ∧ ∀𝑦 ∈ (0..^(♯‘(1st𝐵)))((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))})) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))))
7240, 45, 71syl2and 608 . . . . . 6 (𝐺 ∈ USPGraph → ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)))))))
73723imp1 1348 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁){((2nd𝐴)‘𝑦), ((2nd𝐴)‘(𝑦 + 1))} = {((2nd𝐵)‘𝑦), ((2nd𝐵)‘(𝑦 + 1))} → ∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦))))
74 eqcom 2742 . . . . . . 7 (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) ↔ ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)))
7535uspgrf1oedg 29152 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
76 f1of1 6817 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
7775, 76syl 17 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
78 eqidd 2736 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → (iEdg‘𝐺) = (iEdg‘𝐺))
79 eqidd 2736 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → dom (iEdg‘𝐺) = dom (iEdg‘𝐺))
80 edgval 29028 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
8180eqcomi 2744 . . . . . . . . . . . . 13 ran (iEdg‘𝐺) = (Edg‘𝐺)
8281a1i 11 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → ran (iEdg‘𝐺) = (Edg‘𝐺))
8378, 79, 82f1eq123d 6810 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)))
8477, 83mpbird 257 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺))
85843ad2ant1 1133 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺))
8685adantr 480 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺))
8734, 35, 36, 37wlkelwrd 29613 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)))
8834, 35, 41, 42wlkelwrd 29613 . . . . . . . . . . . . . . 15 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)))
89 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 = (♯‘(1st𝐴)) → (0..^𝑁) = (0..^(♯‘(1st𝐴))))
9089eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 = (♯‘(1st𝐴)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘(1st𝐴)))))
91 wrdsymbcl 14545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ 𝑦 ∈ (0..^(♯‘(1st𝐴)))) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺))
9291expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘(1st𝐴))) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
9390, 92biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘(1st𝐴)) → (𝑦 ∈ (0..^𝑁) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺))))
9493adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺))))
9594imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
9695com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
9796adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐴) ∈ Word dom (iEdg‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺)))
98 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 = (♯‘(1st𝐵)) → (0..^𝑁) = (0..^(♯‘(1st𝐵))))
9998eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘(1st𝐵)))))
100 wrdsymbcl 14545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ 𝑦 ∈ (0..^(♯‘(1st𝐵)))) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))
101100expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘(1st𝐵))) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
10299, 101biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
104103imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
105104com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
106105adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐴) ∈ Word dom (iEdg‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
10797, 106jcad 512 . . . . . . . . . . . . . . . . . . . 20 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐴) ∈ Word dom (iEdg‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
108107ex 412 . . . . . . . . . . . . . . . . . . 19 ((1st𝐵) ∈ Word dom (iEdg‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
109108adantr 480 . . . . . . . . . . . . . . . . . 18 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
110109com12 32 . . . . . . . . . . . . . . . . 17 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
111110adantr 480 . . . . . . . . . . . . . . . 16 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
112111imp 406 . . . . . . . . . . . . . . 15 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
11387, 88, 112syl2an 596 . . . . . . . . . . . . . 14 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
114113expd 415 . . . . . . . . . . . . 13 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((𝑁 = (♯‘(1st𝐴)) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
115114expd 415 . . . . . . . . . . . 12 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))))
116115imp 406 . . . . . . . . . . 11 (((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
1171163adant1 1130 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝑁 = (♯‘(1st𝐵)) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))))
118117imp 406 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (𝑦 ∈ (0..^𝑁) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))))
119118imp 406 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺)))
120 f1veqaeq 7249 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→ran (iEdg‘𝐺) ∧ (((1st𝐴)‘𝑦) ∈ dom (iEdg‘𝐺) ∧ ((1st𝐵)‘𝑦) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) → ((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
12186, 119, 120syl2an2r 685 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) → ((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
12274, 121biimtrid 242 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) ∧ 𝑦 ∈ (0..^𝑁)) → (((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) → ((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
123122ralimdva 3152 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0..^𝑁)((iEdg‘𝐺)‘((1st𝐵)‘𝑦)) = ((iEdg‘𝐺)‘((1st𝐴)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
12432, 73, 1233syld 60 . . . 4 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) ∧ 𝑁 = (♯‘(1st𝐵))) → (∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦) → ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
125124expimpd 453 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦)))
126125pm4.71d 561 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦)) ∧ ∀𝑦 ∈ (0..^𝑁)((1st𝐴)‘𝑦) = ((1st𝐵)‘𝑦))))
1272, 5, 1263bitr4d 311 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926  {cpr 4603  dom cdm 5654  ran crn 5655  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  0cc0 11129  1c1 11130   + caddc 11132  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  UPGraphcupgr 29059  USPGraphcuspgr 29127  Walkscwlks 29576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-edg 29027  df-uhgr 29037  df-upgr 29061  df-uspgr 29129  df-wlks 29579
This theorem is referenced by:  uspgr2wlkeq2  29627  clwlkclwwlkf1  29991
  Copyright terms: Public domain W3C validator