MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrn2lp Structured version   Visualization version   GIF version

Theorem efrn2lp 5595
Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
efrn2lp (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))

Proof of Theorem efrn2lp
StepHypRef Expression
1 fr2nr 5591 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵 E 𝐶𝐶 E 𝐵))
2 epelg 5515 . . . 4 (𝐶𝐴 → (𝐵 E 𝐶𝐵𝐶))
3 epelg 5515 . . . 4 (𝐵𝐴 → (𝐶 E 𝐵𝐶𝐵))
42, 3bi2anan9r 639 . . 3 ((𝐵𝐴𝐶𝐴) → ((𝐵 E 𝐶𝐶 E 𝐵) ↔ (𝐵𝐶𝐶𝐵)))
54adantl 481 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 E 𝐶𝐶 E 𝐵) ↔ (𝐵𝐶𝐶𝐵)))
61, 5mtbid 324 1 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5089   E cep 5513   Fr wfr 5564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567
This theorem is referenced by:  en2lp  9496
  Copyright terms: Public domain W3C validator