MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrn2lp Structured version   Visualization version   GIF version

Theorem efrn2lp 5571
Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
efrn2lp (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))

Proof of Theorem efrn2lp
StepHypRef Expression
1 fr2nr 5567 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵 E 𝐶𝐶 E 𝐵))
2 epelg 5496 . . . 4 (𝐶𝐴 → (𝐵 E 𝐶𝐵𝐶))
3 epelg 5496 . . . 4 (𝐵𝐴 → (𝐶 E 𝐵𝐶𝐵))
42, 3bi2anan9r 637 . . 3 ((𝐵𝐴𝐶𝐴) → ((𝐵 E 𝐶𝐶 E 𝐵) ↔ (𝐵𝐶𝐶𝐵)))
54adantl 482 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 E 𝐶𝐶 E 𝐵) ↔ (𝐵𝐶𝐶𝐵)))
61, 5mtbid 324 1 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074   E cep 5494   Fr wfr 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544
This theorem is referenced by:  en2lp  9364
  Copyright terms: Public domain W3C validator