![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efrn2lp | Structured version Visualization version GIF version |
Description: A set founded by epsilon contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
efrn2lp | ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr2nr 5385 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 E 𝐶 ∧ 𝐶 E 𝐵)) | |
2 | epelg 5318 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | epelg 5318 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐶 E 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
4 | 2, 3 | bi2anan9r 627 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵))) |
5 | 4 | adantl 474 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵))) |
6 | 1, 5 | mtbid 316 | 1 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2050 class class class wbr 4929 E cep 5316 Fr wfr 5363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-eprel 5317 df-fr 5366 |
This theorem is referenced by: en2lp 8864 |
Copyright terms: Public domain | W3C validator |