Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efrn2lp | Structured version Visualization version GIF version |
Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
efrn2lp | ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr2nr 5558 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 E 𝐶 ∧ 𝐶 E 𝐵)) | |
2 | epelg 5487 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | epelg 5487 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐶 E 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
4 | 2, 3 | bi2anan9r 636 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵))) |
5 | 4 | adantl 481 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵))) |
6 | 1, 5 | mtbid 323 | 1 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 E cep 5485 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 |
This theorem is referenced by: en2lp 9294 |
Copyright terms: Public domain | W3C validator |