| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efrn2lp | Structured version Visualization version GIF version | ||
| Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| efrn2lp | ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr2nr 5618 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 E 𝐶 ∧ 𝐶 E 𝐵)) | |
| 2 | epelg 5542 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | epelg 5542 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐶 E 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
| 4 | 2, 3 | bi2anan9r 639 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵))) |
| 5 | 4 | adantl 481 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵))) |
| 6 | 1, 5 | mtbid 324 | 1 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 E cep 5540 Fr wfr 5591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 |
| This theorem is referenced by: en2lp 9566 |
| Copyright terms: Public domain | W3C validator |