MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrn2lp Structured version   Visualization version   GIF version

Theorem efrn2lp 5621
Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
efrn2lp (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))

Proof of Theorem efrn2lp
StepHypRef Expression
1 fr2nr 5617 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵 E 𝐶𝐶 E 𝐵))
2 epelg 5541 . . . 4 (𝐶𝐴 → (𝐵 E 𝐶𝐵𝐶))
3 epelg 5541 . . . 4 (𝐵𝐴 → (𝐶 E 𝐵𝐶𝐵))
42, 3bi2anan9r 639 . . 3 ((𝐵𝐴𝐶𝐴) → ((𝐵 E 𝐶𝐶 E 𝐵) ↔ (𝐵𝐶𝐶𝐵)))
54adantl 481 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 E 𝐶𝐶 E 𝐵) ↔ (𝐵𝐶𝐶𝐵)))
61, 5mtbid 324 1 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5109   E cep 5539   Fr wfr 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-eprel 5540  df-fr 5593
This theorem is referenced by:  en2lp  9565
  Copyright terms: Public domain W3C validator