| Step | Hyp | Ref
| Expression |
| 1 | | seqf1o.6 |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 2 | | seqf1o.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶) |
| 3 | 2 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) |
| 4 | | seqf1o.4 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀)) |
| 6 | | f1oeq23 6814 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑀) ∧ (𝑀...𝑥) = (𝑀...𝑀)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀))) |
| 7 | 5, 5, 6 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀))) |
| 8 | 5 | feq2d 6697 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑀)⟶𝐶)) |
| 9 | 7, 8 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶))) |
| 10 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀)) |
| 11 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑀)) |
| 12 | 10, 11 | eqeq12d 2752 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) |
| 13 | 9, 12 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) |
| 14 | 13 | 2albidv 1923 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) |
| 15 | 14 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))) |
| 16 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘)) |
| 17 | | f1oeq23 6814 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑘) ∧ (𝑀...𝑥) = (𝑀...𝑘)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) |
| 18 | 16, 16, 17 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) |
| 19 | 16 | feq2d 6697 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑘)⟶𝐶)) |
| 20 | 18, 19 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶))) |
| 21 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘)) |
| 22 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑘)) |
| 23 | 21, 22 | eqeq12d 2752 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) |
| 24 | 20, 23 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))) |
| 25 | 24 | 2albidv 1923 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))) |
| 26 | 25 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑘 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))) |
| 27 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → (𝑀...𝑥) = (𝑀...(𝑘 + 1))) |
| 28 | | f1oeq23 6814 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...(𝑘 + 1)) ∧ (𝑀...𝑥) = (𝑀...(𝑘 + 1))) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))) |
| 29 | 27, 27, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))) |
| 30 | 27 | feq2d 6697 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) |
| 31 | 29, 30 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶))) |
| 32 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1))) |
| 33 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))) |
| 34 | 32, 33 | eqeq12d 2752 |
. . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))) |
| 35 | 31, 34 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 36 | 35 | 2albidv 1923 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 37 | 36 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) |
| 38 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁)) |
| 39 | | f1oeq23 6814 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑁) ∧ (𝑀...𝑥) = (𝑀...𝑁)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
| 40 | 38, 38, 39 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
| 41 | 38 | feq2d 6697 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑁)⟶𝐶)) |
| 42 | 40, 41 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶))) |
| 43 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁)) |
| 44 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑁)) |
| 45 | 43, 44 | eqeq12d 2752 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) |
| 46 | 42, 45 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) |
| 47 | 46 | 2albidv 1923 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) |
| 48 | 47 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))) |
| 49 | | f1of 6823 |
. . . . . . . . . . . . 13
⊢ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀)) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀)) |
| 51 | | elfz3 13556 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) |
| 52 | | fvco3 6983 |
. . . . . . . . . . . 12
⊢ ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘(𝑓‘𝑀))) |
| 53 | 50, 51, 52 | syl2anr 597 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘(𝑓‘𝑀))) |
| 54 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → (𝑓‘𝑀) ∈ (𝑀...𝑀)) |
| 55 | 49, 51, 54 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓‘𝑀) ∈ (𝑀...𝑀)) |
| 56 | | fzsn 13588 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| 57 | 56 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → ((𝑓‘𝑀) ∈ (𝑀...𝑀) ↔ (𝑓‘𝑀) ∈ {𝑀})) |
| 58 | | elsni 4623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑀) ∈ {𝑀} → (𝑓‘𝑀) = 𝑀) |
| 59 | 57, 58 | biimtrdi 253 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → ((𝑓‘𝑀) ∈ (𝑀...𝑀) → (𝑓‘𝑀) = 𝑀)) |
| 60 | 59 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝑓‘𝑀) ∈ (𝑀...𝑀)) → (𝑓‘𝑀) = 𝑀) |
| 61 | 55, 60 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓‘𝑀) = 𝑀) |
| 62 | 61 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑓‘𝑀) = 𝑀) |
| 63 | 62 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔‘(𝑓‘𝑀)) = (𝑔‘𝑀)) |
| 64 | 53, 63 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘𝑀)) |
| 65 | | seq1 14037 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = ((𝑔 ∘ 𝑓)‘𝑀)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = ((𝑔 ∘ 𝑓)‘𝑀)) |
| 67 | | seq1 14037 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔‘𝑀)) |
| 68 | 67 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔‘𝑀)) |
| 69 | 64, 66, 68 | 3eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)) |
| 70 | 69 | ex 412 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) |
| 71 | 70 | alrimivv 1928 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ →
∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) |
| 72 | 71 | a1d 25 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) |
| 73 | | f1oeq1 6811 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑡 → (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ↔ 𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) |
| 74 | | feq1 6691 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑠 → (𝑔:(𝑀...𝑘)⟶𝐶 ↔ 𝑠:(𝑀...𝑘)⟶𝐶)) |
| 75 | 73, 74 | bi2anan9r 639 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) ↔ (𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶))) |
| 76 | | coeq1 5842 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑠 → (𝑔 ∘ 𝑓) = (𝑠 ∘ 𝑓)) |
| 77 | | coeq2 5843 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑡 → (𝑠 ∘ 𝑓) = (𝑠 ∘ 𝑡)) |
| 78 | 76, 77 | sylan9eq 2791 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (𝑔 ∘ 𝑓) = (𝑠 ∘ 𝑡)) |
| 79 | 78 | seqeq3d 14032 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , (𝑠 ∘ 𝑡))) |
| 80 | 79 | fveq1d 6883 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘)) |
| 81 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → 𝑔 = 𝑠) |
| 82 | 81 | seqeq3d 14032 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → seq𝑀( + , 𝑔) = seq𝑀( + , 𝑠)) |
| 83 | 82 | fveq1d 6883 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (seq𝑀( + , 𝑔)‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) |
| 84 | 80, 83 | eqeq12d 2752 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘) ↔ (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) |
| 85 | 75, 84 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))) |
| 86 | 85 | cbval2vw 2040 |
. . . . . . . . 9
⊢
(∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) |
| 87 | | simplll 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝜑) |
| 88 | | seqf1o.1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 89 | 87, 88 | sylan 580 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 90 | | seqf1o.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 91 | 87, 90 | sylan 580 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 92 | | seqf1o.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 93 | 87, 92 | sylan 580 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 94 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 95 | | seqf1o.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| 96 | 87, 95 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝐶 ⊆ 𝑆) |
| 97 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))) |
| 98 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) |
| 99 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (◡𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) = (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (◡𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) |
| 100 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (◡𝑓‘(𝑘 + 1)) = (◡𝑓‘(𝑘 + 1)) |
| 101 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) |
| 102 | 101, 86 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) |
| 103 | 89, 91, 93, 94, 96, 97, 98, 99, 100, 102 | seqf1olem2 14065 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))) |
| 104 | 103 | exp31 419 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 105 | 86, 104 | biimtrrid 243 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 106 | 105 | alrimdv 1929 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 107 | 106 | alrimdv 1929 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 108 | 86, 107 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
| 109 | 108 | expcom 413 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) |
| 110 | 109 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) |
| 111 | 15, 26, 37, 48, 72, 110 | uzind4 12927 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) |
| 112 | 4, 111 | mpcom 38 |
. . . 4
⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) |
| 113 | | fvex 6894 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
| 114 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) |
| 115 | 113, 114 | fnmpti 6686 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) Fn (𝑀...𝑁) |
| 116 | | fzfi 13995 |
. . . . . 6
⊢ (𝑀...𝑁) ∈ Fin |
| 117 | | fnfi 9197 |
. . . . . 6
⊢ (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin) |
| 118 | 115, 116,
117 | mp2an 692 |
. . . . 5
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin |
| 119 | | f1of 6823 |
. . . . . . 7
⊢ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 120 | 1, 119 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 121 | | ovexd 7445 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ V) |
| 122 | | fex2 7937 |
. . . . . 6
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ V ∧ (𝑀...𝑁) ∈ V) → 𝐹 ∈ V) |
| 123 | 120, 121,
121, 122 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
| 124 | | f1oeq1 6811 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
| 125 | | feq1 6691 |
. . . . . . . 8
⊢ (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶)) |
| 126 | 124, 125 | bi2anan9r 639 |
. . . . . . 7
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶))) |
| 127 | | coeq1 5842 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) → (𝑔 ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝑓)) |
| 128 | | coeq2 5843 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)) |
| 129 | 127, 128 | sylan9eq 2791 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (𝑔 ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)) |
| 130 | 129 | seqeq3d 14032 |
. . . . . . . . 9
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))) |
| 131 | 130 | fveq1d 6883 |
. . . . . . . 8
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁)) |
| 132 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → 𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))) |
| 133 | 132 | seqeq3d 14032 |
. . . . . . . . 9
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))) |
| 134 | 133 | fveq1d 6883 |
. . . . . . . 8
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)) |
| 135 | 131, 134 | eqeq12d 2752 |
. . . . . . 7
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁))) |
| 136 | 126, 135 | imbi12d 344 |
. . . . . 6
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) |
| 137 | 136 | spc2gv 3584 |
. . . . 5
⊢ (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin ∧ 𝐹 ∈ V) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) |
| 138 | 118, 123,
137 | sylancr 587 |
. . . 4
⊢ (𝜑 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) |
| 139 | 112, 138 | mpd 15 |
. . 3
⊢ (𝜑 → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁))) |
| 140 | 1, 3, 139 | mp2and 699 |
. 2
⊢ (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)) |
| 141 | 120 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ (𝑀...𝑁)) |
| 142 | | fveq2 6881 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑘) → (𝐺‘𝑥) = (𝐺‘(𝐹‘𝑘))) |
| 143 | | fvex 6894 |
. . . . . 6
⊢ (𝐺‘(𝐹‘𝑘)) ∈ V |
| 144 | 142, 114,
143 | fvmpt 6991 |
. . . . 5
⊢ ((𝐹‘𝑘) ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘)) = (𝐺‘(𝐹‘𝑘))) |
| 145 | 141, 144 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘)) = (𝐺‘(𝐹‘𝑘))) |
| 146 | | fvco3 6983 |
. . . . 5
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘))) |
| 147 | 120, 146 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘))) |
| 148 | | seqf1o.8 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) |
| 149 | 145, 147,
148 | 3eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = (𝐻‘𝑘)) |
| 150 | 4, 149 | seqfveq 14049 |
. 2
⊢ (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , 𝐻)‘𝑁)) |
| 151 | | fveq2 6881 |
. . . . 5
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) |
| 152 | | fvex 6894 |
. . . . 5
⊢ (𝐺‘𝑘) ∈ V |
| 153 | 151, 114,
152 | fvmpt 6991 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘𝑘) = (𝐺‘𝑘)) |
| 154 | 153 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘𝑘) = (𝐺‘𝑘)) |
| 155 | 4, 154 | seqfveq 14049 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 156 | 140, 150,
155 | 3eqtr3d 2779 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |