| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | seqf1o.6 | . . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 2 |  | seqf1o.7 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶) | 
| 3 | 2 | fmpttd 7135 | . . 3
⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) | 
| 4 |  | seqf1o.4 | . . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 5 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀)) | 
| 6 |  | f1oeq23 6839 | . . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑀) ∧ (𝑀...𝑥) = (𝑀...𝑀)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀))) | 
| 7 | 5, 5, 6 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀))) | 
| 8 | 5 | feq2d 6722 | . . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑀)⟶𝐶)) | 
| 9 | 7, 8 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶))) | 
| 10 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀)) | 
| 11 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑀)) | 
| 12 | 10, 11 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) | 
| 13 | 9, 12 | imbi12d 344 | . . . . . . . 8
⊢ (𝑥 = 𝑀 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) | 
| 14 | 13 | 2albidv 1923 | . . . . . . 7
⊢ (𝑥 = 𝑀 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) | 
| 15 | 14 | imbi2d 340 | . . . . . 6
⊢ (𝑥 = 𝑀 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))) | 
| 16 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘)) | 
| 17 |  | f1oeq23 6839 | . . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑘) ∧ (𝑀...𝑥) = (𝑀...𝑘)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) | 
| 18 | 16, 16, 17 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) | 
| 19 | 16 | feq2d 6722 | . . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑘)⟶𝐶)) | 
| 20 | 18, 19 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑥 = 𝑘 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶))) | 
| 21 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘)) | 
| 22 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑘)) | 
| 23 | 21, 22 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑘 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) | 
| 24 | 20, 23 | imbi12d 344 | . . . . . . . 8
⊢ (𝑥 = 𝑘 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))) | 
| 25 | 24 | 2albidv 1923 | . . . . . . 7
⊢ (𝑥 = 𝑘 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))) | 
| 26 | 25 | imbi2d 340 | . . . . . 6
⊢ (𝑥 = 𝑘 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))) | 
| 27 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → (𝑀...𝑥) = (𝑀...(𝑘 + 1))) | 
| 28 |  | f1oeq23 6839 | . . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...(𝑘 + 1)) ∧ (𝑀...𝑥) = (𝑀...(𝑘 + 1))) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))) | 
| 29 | 27, 27, 28 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))) | 
| 30 | 27 | feq2d 6722 | . . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) | 
| 31 | 29, 30 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶))) | 
| 32 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1))) | 
| 33 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))) | 
| 34 | 32, 33 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))) | 
| 35 | 31, 34 | imbi12d 344 | . . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 36 | 35 | 2albidv 1923 | . . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 37 | 36 | imbi2d 340 | . . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) | 
| 38 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁)) | 
| 39 |  | f1oeq23 6839 | . . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑁) ∧ (𝑀...𝑥) = (𝑀...𝑁)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | 
| 40 | 38, 38, 39 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | 
| 41 | 38 | feq2d 6722 | . . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑁)⟶𝐶)) | 
| 42 | 40, 41 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶))) | 
| 43 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁)) | 
| 44 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑁)) | 
| 45 | 43, 44 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) | 
| 46 | 42, 45 | imbi12d 344 | . . . . . . . 8
⊢ (𝑥 = 𝑁 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) | 
| 47 | 46 | 2albidv 1923 | . . . . . . 7
⊢ (𝑥 = 𝑁 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) | 
| 48 | 47 | imbi2d 340 | . . . . . 6
⊢ (𝑥 = 𝑁 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))) | 
| 49 |  | f1of 6848 | . . . . . . . . . . . . 13
⊢ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀)) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀)) | 
| 51 |  | elfz3 13574 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | 
| 52 |  | fvco3 7008 | . . . . . . . . . . . 12
⊢ ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘(𝑓‘𝑀))) | 
| 53 | 50, 51, 52 | syl2anr 597 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘(𝑓‘𝑀))) | 
| 54 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → (𝑓‘𝑀) ∈ (𝑀...𝑀)) | 
| 55 | 49, 51, 54 | syl2anr 597 | . . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓‘𝑀) ∈ (𝑀...𝑀)) | 
| 56 |  | fzsn 13606 | . . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | 
| 57 | 56 | eleq2d 2827 | . . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → ((𝑓‘𝑀) ∈ (𝑀...𝑀) ↔ (𝑓‘𝑀) ∈ {𝑀})) | 
| 58 |  | elsni 4643 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑀) ∈ {𝑀} → (𝑓‘𝑀) = 𝑀) | 
| 59 | 57, 58 | biimtrdi 253 | . . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → ((𝑓‘𝑀) ∈ (𝑀...𝑀) → (𝑓‘𝑀) = 𝑀)) | 
| 60 | 59 | imp 406 | . . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝑓‘𝑀) ∈ (𝑀...𝑀)) → (𝑓‘𝑀) = 𝑀) | 
| 61 | 55, 60 | syldan 591 | . . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓‘𝑀) = 𝑀) | 
| 62 | 61 | adantrr 717 | . . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑓‘𝑀) = 𝑀) | 
| 63 | 62 | fveq2d 6910 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔‘(𝑓‘𝑀)) = (𝑔‘𝑀)) | 
| 64 | 53, 63 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘𝑀)) | 
| 65 |  | seq1 14055 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = ((𝑔 ∘ 𝑓)‘𝑀)) | 
| 66 | 65 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = ((𝑔 ∘ 𝑓)‘𝑀)) | 
| 67 |  | seq1 14055 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔‘𝑀)) | 
| 68 | 67 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔‘𝑀)) | 
| 69 | 64, 66, 68 | 3eqtr4d 2787 | . . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)) | 
| 70 | 69 | ex 412 | . . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) | 
| 71 | 70 | alrimivv 1928 | . . . . . . 7
⊢ (𝑀 ∈ ℤ →
∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) | 
| 72 | 71 | a1d 25 | . . . . . 6
⊢ (𝑀 ∈ ℤ → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) | 
| 73 |  | f1oeq1 6836 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝑡 → (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ↔ 𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) | 
| 74 |  | feq1 6716 | . . . . . . . . . . . 12
⊢ (𝑔 = 𝑠 → (𝑔:(𝑀...𝑘)⟶𝐶 ↔ 𝑠:(𝑀...𝑘)⟶𝐶)) | 
| 75 | 73, 74 | bi2anan9r 639 | . . . . . . . . . . 11
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) ↔ (𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶))) | 
| 76 |  | coeq1 5868 | . . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑠 → (𝑔 ∘ 𝑓) = (𝑠 ∘ 𝑓)) | 
| 77 |  | coeq2 5869 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑡 → (𝑠 ∘ 𝑓) = (𝑠 ∘ 𝑡)) | 
| 78 | 76, 77 | sylan9eq 2797 | . . . . . . . . . . . . . 14
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (𝑔 ∘ 𝑓) = (𝑠 ∘ 𝑡)) | 
| 79 | 78 | seqeq3d 14050 | . . . . . . . . . . . . 13
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , (𝑠 ∘ 𝑡))) | 
| 80 | 79 | fveq1d 6908 | . . . . . . . . . . . 12
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘)) | 
| 81 |  | simpl 482 | . . . . . . . . . . . . . 14
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → 𝑔 = 𝑠) | 
| 82 | 81 | seqeq3d 14050 | . . . . . . . . . . . . 13
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → seq𝑀( + , 𝑔) = seq𝑀( + , 𝑠)) | 
| 83 | 82 | fveq1d 6908 | . . . . . . . . . . . 12
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (seq𝑀( + , 𝑔)‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) | 
| 84 | 80, 83 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘) ↔ (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) | 
| 85 | 75, 84 | imbi12d 344 | . . . . . . . . . 10
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))) | 
| 86 | 85 | cbval2vw 2039 | . . . . . . . . 9
⊢
(∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) | 
| 87 |  | simplll 775 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝜑) | 
| 88 |  | seqf1o.1 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 89 | 87, 88 | sylan 580 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 90 |  | seqf1o.2 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | 
| 91 | 87, 90 | sylan 580 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | 
| 92 |  | seqf1o.3 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 93 | 87, 92 | sylan 580 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 94 |  | simpllr 776 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 95 |  | seqf1o.5 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ⊆ 𝑆) | 
| 96 | 87, 95 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝐶 ⊆ 𝑆) | 
| 97 |  | simprl 771 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))) | 
| 98 |  | simprr 773 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) | 
| 99 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (◡𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) = (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (◡𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) | 
| 100 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢ (◡𝑓‘(𝑘 + 1)) = (◡𝑓‘(𝑘 + 1)) | 
| 101 |  | simplr 769 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) | 
| 102 | 101, 86 | sylib 218 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) | 
| 103 | 89, 91, 93, 94, 96, 97, 98, 99, 100, 102 | seqf1olem2 14083 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))) | 
| 104 | 103 | exp31 419 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 105 | 86, 104 | biimtrrid 243 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 106 | 105 | alrimdv 1929 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 107 | 106 | alrimdv 1929 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 108 | 86, 107 | biimtrid 242 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) | 
| 109 | 108 | expcom 413 | . . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) | 
| 110 | 109 | a2d 29 | . . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) | 
| 111 | 15, 26, 37, 48, 72, 110 | uzind4 12948 | . . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) | 
| 112 | 4, 111 | mpcom 38 | . . . 4
⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) | 
| 113 |  | fvex 6919 | . . . . . . 7
⊢ (𝐺‘𝑥) ∈ V | 
| 114 |  | eqid 2737 | . . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) | 
| 115 | 113, 114 | fnmpti 6711 | . . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) Fn (𝑀...𝑁) | 
| 116 |  | fzfi 14013 | . . . . . 6
⊢ (𝑀...𝑁) ∈ Fin | 
| 117 |  | fnfi 9218 | . . . . . 6
⊢ (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin) | 
| 118 | 115, 116,
117 | mp2an 692 | . . . . 5
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin | 
| 119 |  | f1of 6848 | . . . . . . 7
⊢ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 120 | 1, 119 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 121 |  | ovexd 7466 | . . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ V) | 
| 122 |  | fex2 7958 | . . . . . 6
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ V ∧ (𝑀...𝑁) ∈ V) → 𝐹 ∈ V) | 
| 123 | 120, 121,
121, 122 | syl3anc 1373 | . . . . 5
⊢ (𝜑 → 𝐹 ∈ V) | 
| 124 |  | f1oeq1 6836 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | 
| 125 |  | feq1 6716 | . . . . . . . 8
⊢ (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶)) | 
| 126 | 124, 125 | bi2anan9r 639 | . . . . . . 7
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶))) | 
| 127 |  | coeq1 5868 | . . . . . . . . . . 11
⊢ (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) → (𝑔 ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝑓)) | 
| 128 |  | coeq2 5869 | . . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)) | 
| 129 | 127, 128 | sylan9eq 2797 | . . . . . . . . . 10
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (𝑔 ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)) | 
| 130 | 129 | seqeq3d 14050 | . . . . . . . . 9
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))) | 
| 131 | 130 | fveq1d 6908 | . . . . . . . 8
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁)) | 
| 132 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → 𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))) | 
| 133 | 132 | seqeq3d 14050 | . . . . . . . . 9
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))) | 
| 134 | 133 | fveq1d 6908 | . . . . . . . 8
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)) | 
| 135 | 131, 134 | eqeq12d 2753 | . . . . . . 7
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁))) | 
| 136 | 126, 135 | imbi12d 344 | . . . . . 6
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) | 
| 137 | 136 | spc2gv 3600 | . . . . 5
⊢ (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin ∧ 𝐹 ∈ V) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) | 
| 138 | 118, 123,
137 | sylancr 587 | . . . 4
⊢ (𝜑 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) | 
| 139 | 112, 138 | mpd 15 | . . 3
⊢ (𝜑 → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁))) | 
| 140 | 1, 3, 139 | mp2and 699 | . 2
⊢ (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)) | 
| 141 | 120 | ffvelcdmda 7104 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ (𝑀...𝑁)) | 
| 142 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = (𝐹‘𝑘) → (𝐺‘𝑥) = (𝐺‘(𝐹‘𝑘))) | 
| 143 |  | fvex 6919 | . . . . . 6
⊢ (𝐺‘(𝐹‘𝑘)) ∈ V | 
| 144 | 142, 114,
143 | fvmpt 7016 | . . . . 5
⊢ ((𝐹‘𝑘) ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘)) = (𝐺‘(𝐹‘𝑘))) | 
| 145 | 141, 144 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘)) = (𝐺‘(𝐹‘𝑘))) | 
| 146 |  | fvco3 7008 | . . . . 5
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘))) | 
| 147 | 120, 146 | sylan 580 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘))) | 
| 148 |  | seqf1o.8 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) | 
| 149 | 145, 147,
148 | 3eqtr4d 2787 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = (𝐻‘𝑘)) | 
| 150 | 4, 149 | seqfveq 14067 | . 2
⊢ (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , 𝐻)‘𝑁)) | 
| 151 |  | fveq2 6906 | . . . . 5
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | 
| 152 |  | fvex 6919 | . . . . 5
⊢ (𝐺‘𝑘) ∈ V | 
| 153 | 151, 114,
152 | fvmpt 7016 | . . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘𝑘) = (𝐺‘𝑘)) | 
| 154 | 153 | adantl 481 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘𝑘) = (𝐺‘𝑘)) | 
| 155 | 4, 154 | seqfveq 14067 | . 2
⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | 
| 156 | 140, 150,
155 | 3eqtr3d 2785 | 1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |