Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0op Structured version   Visualization version   GIF version

Theorem satf0op 34895
Description: An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023.)
Hypothesis
Ref Expression
satf0op.s 𝑆 = (∅ Sat ∅)
Assertion
Ref Expression
satf0op (𝑁 ∈ ω → (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑆   𝑥,𝑋

Proof of Theorem satf0op
Dummy variables 𝑖 𝑗 𝑦 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6884 . . . 4 (𝑦 = ∅ → (𝑆𝑦) = (𝑆‘∅))
21eleq2d 2813 . . 3 (𝑦 = ∅ → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆‘∅)))
31eleq2d 2813 . . . . 5 (𝑦 = ∅ → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
43anbi2d 628 . . . 4 (𝑦 = ∅ → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))))
54exbidv 1916 . . 3 (𝑦 = ∅ → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))))
62, 5bibi12d 345 . 2 (𝑦 = ∅ → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆‘∅) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))))
7 fveq2 6884 . . . 4 (𝑦 = 𝑧 → (𝑆𝑦) = (𝑆𝑧))
87eleq2d 2813 . . 3 (𝑦 = 𝑧 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆𝑧)))
97eleq2d 2813 . . . . 5 (𝑦 = 𝑧 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))
109anbi2d 628 . . . 4 (𝑦 = 𝑧 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
1110exbidv 1916 . . 3 (𝑦 = 𝑧 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
128, 11bibi12d 345 . 2 (𝑦 = 𝑧 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))))
13 fveq2 6884 . . . 4 (𝑦 = suc 𝑧 → (𝑆𝑦) = (𝑆‘suc 𝑧))
1413eleq2d 2813 . . 3 (𝑦 = suc 𝑧 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆‘suc 𝑧)))
1513eleq2d 2813 . . . . 5 (𝑦 = suc 𝑧 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))
1615anbi2d 628 . . . 4 (𝑦 = suc 𝑧 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
1716exbidv 1916 . . 3 (𝑦 = suc 𝑧 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
1814, 17bibi12d 345 . 2 (𝑦 = suc 𝑧 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))))
19 fveq2 6884 . . . 4 (𝑦 = 𝑁 → (𝑆𝑦) = (𝑆𝑁))
2019eleq2d 2813 . . 3 (𝑦 = 𝑁 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆𝑁)))
2119eleq2d 2813 . . . . 5 (𝑦 = 𝑁 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁)))
2221anbi2d 628 . . . 4 (𝑦 = 𝑁 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
2322exbidv 1916 . . 3 (𝑦 = 𝑁 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
2420, 23bibi12d 345 . 2 (𝑦 = 𝑁 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁)))))
25 satf0op.s . . . . . 6 𝑆 = (∅ Sat ∅)
2625fveq1i 6885 . . . . 5 (𝑆‘∅) = ((∅ Sat ∅)‘∅)
27 satf00 34892 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
2826, 27eqtri 2754 . . . 4 (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
2928eleq2i 2819 . . 3 (𝑋 ∈ (𝑆‘∅) ↔ 𝑋 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
30 elopab 5520 . . 3 (𝑋 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
31 opeq2 4869 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ∅⟩)
3231adantr 480 . . . . . . . . . 10 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ∅⟩)
3332eqeq2d 2737 . . . . . . . . 9 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, ∅⟩))
3433biimpd 228 . . . . . . . 8 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (𝑋 = ⟨𝑥, 𝑦⟩ → 𝑋 = ⟨𝑥, ∅⟩))
3534impcom 407 . . . . . . 7 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑋 = ⟨𝑥, ∅⟩)
36 eqidd 2727 . . . . . . . . . 10 (𝑦 = ∅ → ∅ = ∅)
3736anim1i 614 . . . . . . . . 9 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
3837adantl 481 . . . . . . . 8 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
39 satf00 34892 . . . . . . . . . . 11 ((∅ Sat ∅)‘∅) = {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))}
4026, 39eqtri 2754 . . . . . . . . . 10 (𝑆‘∅) = {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))}
4140eleq2i 2819 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ (𝑆‘∅) ↔ ⟨𝑥, ∅⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))})
42 vex 3472 . . . . . . . . . 10 𝑥 ∈ V
43 0ex 5300 . . . . . . . . . 10 ∅ ∈ V
44 eqeq1 2730 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
45 eqeq1 2730 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑖𝑔𝑗)))
46452rexbidv 3213 . . . . . . . . . . 11 (𝑦 = 𝑥 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4744, 46bi2anan9r 637 . . . . . . . . . 10 ((𝑦 = 𝑥𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
4842, 43, 47opelopaba 5529 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4941, 48bitri 275 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝑆‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
5038, 49sylibr 233 . . . . . . 7 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))
5135, 50jca 511 . . . . . 6 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
5251exlimiv 1925 . . . . 5 (∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
5331eqeq2d 2737 . . . . . . . 8 (𝑦 = ∅ → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, ∅⟩))
54 eqeq1 2730 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
5554anbi1d 629 . . . . . . . 8 (𝑦 = ∅ → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5653, 55anbi12d 630 . . . . . . 7 (𝑦 = ∅ → ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))))
5743, 56spcev 3590 . . . . . 6 ((𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → ∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5849, 57sylan2b 593 . . . . 5 ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)) → ∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5952, 58impbii 208 . . . 4 (∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6059exbii 1842 . . 3 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6129, 30, 603bitri 297 . 2 (𝑋 ∈ (𝑆‘∅) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6225satf0suc 34894 . . . . . . 7 (𝑧 ∈ ω → (𝑆‘suc 𝑧) = ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
6362eleq2d 2813 . . . . . 6 (𝑧 ∈ ω → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ 𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
64 elun 4143 . . . . . . 7 (𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
6564a1i 11 . . . . . 6 (𝑧 ∈ ω → (𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
66 elopab 5520 . . . . . . . 8 (𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
6766a1i 11 . . . . . . 7 (𝑧 ∈ ω → (𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
6867orbi2d 912 . . . . . 6 (𝑧 ∈ ω → ((𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
6963, 65, 683bitrd 305 . . . . 5 (𝑧 ∈ ω → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
7069adantr 480 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
71 simpr 484 . . . . . 6 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
72 opeq2 4869 . . . . . . . . . . . . . . . . 17 (𝑏 = ∅ → ⟨𝑎, 𝑏⟩ = ⟨𝑎, ∅⟩)
7372eqeq2d 2737 . . . . . . . . . . . . . . . 16 (𝑏 = ∅ → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨𝑎, ∅⟩))
7473biimpd 228 . . . . . . . . . . . . . . 15 (𝑏 = ∅ → (𝑋 = ⟨𝑎, 𝑏⟩ → 𝑋 = ⟨𝑎, ∅⟩))
7574adantr 480 . . . . . . . . . . . . . 14 ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) → (𝑋 = ⟨𝑎, 𝑏⟩ → 𝑋 = ⟨𝑎, ∅⟩))
7675impcom 407 . . . . . . . . . . . . 13 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → 𝑋 = ⟨𝑎, ∅⟩)
77 eqidd 2727 . . . . . . . . . . . . . 14 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∅ = ∅)
78 simpr 484 . . . . . . . . . . . . . . 15 ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) → ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
7978adantl 481 . . . . . . . . . . . . . 14 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
8077, 79jca 511 . . . . . . . . . . . . 13 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
8176, 80jca 511 . . . . . . . . . . . 12 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8281exlimiv 1925 . . . . . . . . . . 11 (∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
83 eqeq1 2730 . . . . . . . . . . . . . 14 (𝑏 = ∅ → (𝑏 = ∅ ↔ ∅ = ∅))
8483anbi1d 629 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8573, 84anbi12d 630 . . . . . . . . . . . 12 (𝑏 = ∅ → ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
8643, 85spcev 3590 . . . . . . . . . . 11 ((𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8782, 86impbii 208 . . . . . . . . . 10 (∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8887exbii 1842 . . . . . . . . 9 (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8988a1i 11 . . . . . . . 8 (𝑧 ∈ ω → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
90 opeq1 4868 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, ∅⟩ = ⟨𝑎, ∅⟩)
9190eqeq2d 2737 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑋 = ⟨𝑥, ∅⟩ ↔ 𝑋 = ⟨𝑎, ∅⟩))
92 eqeq1 2730 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑎 = ((1st𝑢)⊼𝑔(1st𝑣))))
9392rexbidv 3172 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣))))
94 eqeq1 2730 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑎 = ∀𝑔𝑖(1st𝑢)))
9594rexbidv 3172 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
9693, 95orbi12d 915 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
9796rexbidv 3172 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
9897anbi2d 628 . . . . . . . . . 10 (𝑥 = 𝑎 → ((∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
9991, 98anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
10099cbvexvw 2032 . . . . . . . 8 (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
10189, 100bitr4di 289 . . . . . . 7 (𝑧 ∈ ω → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
102101adantr 480 . . . . . 6 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
10371, 102orbi12d 915 . . . . 5 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → ((𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))) ↔ (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
104 19.43 1877 . . . . . 6 (∃𝑥((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
105 andi 1004 . . . . . . . 8 ((𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
106105bicomi 223 . . . . . . 7 (((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
107106exbii 1842 . . . . . 6 (∃𝑥((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
108104, 107bitr3i 277 . . . . 5 ((∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
109103, 108bitrdi 287 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → ((𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
11062eleq2d 2813 . . . . . . . . 9 (𝑧 ∈ ω → (⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧) ↔ ⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
111 elun 4143 . . . . . . . . . 10 (⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ ⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
112 eqeq1 2730 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
113112rexbidv 3172 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
114 eqeq1 2730 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝑎 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑢)))
115114rexbidv 3172 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
116113, 115orbi12d 915 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → ((∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
117116rexbidv 3172 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
11883, 117bi2anan9r 637 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = ∅) → ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
11942, 43, 118opelopaba 5529 . . . . . . . . . . 11 (⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
120119orbi2i 909 . . . . . . . . . 10 ((⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ ⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
121111, 120bitri 275 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
122110, 121bitrdi 287 . . . . . . . 8 (𝑧 ∈ ω → (⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
123122anbi2d 628 . . . . . . 7 (𝑧 ∈ ω → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
124123exbidv 1916 . . . . . 6 (𝑧 ∈ ω → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
125124bicomd 222 . . . . 5 (𝑧 ∈ ω → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
126125adantr 480 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
12770, 109, 1263bitrd 305 . . 3 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
128127ex 412 . 2 (𝑧 ∈ ω → ((𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))))
1296, 12, 18, 24, 61, 128finds 7885 1 (𝑁 ∈ ω → (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wex 1773  wcel 2098  wrex 3064  cun 3941  c0 4317  cop 4629  {copab 5203  suc csuc 6359  cfv 6536  (class class class)co 7404  ωcom 7851  1st c1st 7969  𝑔cgoe 34851  𝑔cgna 34852  𝑔cgol 34853   Sat csat 34854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-map 8821  df-goel 34858  df-sat 34861
This theorem is referenced by:  fmlasuc  34904
  Copyright terms: Public domain W3C validator