Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0op Structured version   Visualization version   GIF version

Theorem satf0op 35364
Description: An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023.)
Hypothesis
Ref Expression
satf0op.s 𝑆 = (∅ Sat ∅)
Assertion
Ref Expression
satf0op (𝑁 ∈ ω → (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑆   𝑥,𝑋

Proof of Theorem satf0op
Dummy variables 𝑖 𝑗 𝑦 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑦 = ∅ → (𝑆𝑦) = (𝑆‘∅))
21eleq2d 2814 . . 3 (𝑦 = ∅ → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆‘∅)))
31eleq2d 2814 . . . . 5 (𝑦 = ∅ → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
43anbi2d 630 . . . 4 (𝑦 = ∅ → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))))
54exbidv 1921 . . 3 (𝑦 = ∅ → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))))
62, 5bibi12d 345 . 2 (𝑦 = ∅ → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆‘∅) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))))
7 fveq2 6858 . . . 4 (𝑦 = 𝑧 → (𝑆𝑦) = (𝑆𝑧))
87eleq2d 2814 . . 3 (𝑦 = 𝑧 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆𝑧)))
97eleq2d 2814 . . . . 5 (𝑦 = 𝑧 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))
109anbi2d 630 . . . 4 (𝑦 = 𝑧 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
1110exbidv 1921 . . 3 (𝑦 = 𝑧 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
128, 11bibi12d 345 . 2 (𝑦 = 𝑧 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))))
13 fveq2 6858 . . . 4 (𝑦 = suc 𝑧 → (𝑆𝑦) = (𝑆‘suc 𝑧))
1413eleq2d 2814 . . 3 (𝑦 = suc 𝑧 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆‘suc 𝑧)))
1513eleq2d 2814 . . . . 5 (𝑦 = suc 𝑧 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))
1615anbi2d 630 . . . 4 (𝑦 = suc 𝑧 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
1716exbidv 1921 . . 3 (𝑦 = suc 𝑧 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
1814, 17bibi12d 345 . 2 (𝑦 = suc 𝑧 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))))
19 fveq2 6858 . . . 4 (𝑦 = 𝑁 → (𝑆𝑦) = (𝑆𝑁))
2019eleq2d 2814 . . 3 (𝑦 = 𝑁 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆𝑁)))
2119eleq2d 2814 . . . . 5 (𝑦 = 𝑁 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁)))
2221anbi2d 630 . . . 4 (𝑦 = 𝑁 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
2322exbidv 1921 . . 3 (𝑦 = 𝑁 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
2420, 23bibi12d 345 . 2 (𝑦 = 𝑁 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁)))))
25 satf0op.s . . . . . 6 𝑆 = (∅ Sat ∅)
2625fveq1i 6859 . . . . 5 (𝑆‘∅) = ((∅ Sat ∅)‘∅)
27 satf00 35361 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
2826, 27eqtri 2752 . . . 4 (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
2928eleq2i 2820 . . 3 (𝑋 ∈ (𝑆‘∅) ↔ 𝑋 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
30 elopab 5487 . . 3 (𝑋 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
31 opeq2 4838 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ∅⟩)
3231adantr 480 . . . . . . . . . 10 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ∅⟩)
3332eqeq2d 2740 . . . . . . . . 9 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, ∅⟩))
3433biimpd 229 . . . . . . . 8 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (𝑋 = ⟨𝑥, 𝑦⟩ → 𝑋 = ⟨𝑥, ∅⟩))
3534impcom 407 . . . . . . 7 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑋 = ⟨𝑥, ∅⟩)
36 eqidd 2730 . . . . . . . . . 10 (𝑦 = ∅ → ∅ = ∅)
3736anim1i 615 . . . . . . . . 9 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
3837adantl 481 . . . . . . . 8 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
39 satf00 35361 . . . . . . . . . . 11 ((∅ Sat ∅)‘∅) = {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))}
4026, 39eqtri 2752 . . . . . . . . . 10 (𝑆‘∅) = {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))}
4140eleq2i 2820 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ (𝑆‘∅) ↔ ⟨𝑥, ∅⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))})
42 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
43 0ex 5262 . . . . . . . . . 10 ∅ ∈ V
44 eqeq1 2733 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
45 eqeq1 2733 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑖𝑔𝑗)))
46452rexbidv 3202 . . . . . . . . . . 11 (𝑦 = 𝑥 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4744, 46bi2anan9r 639 . . . . . . . . . 10 ((𝑦 = 𝑥𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
4842, 43, 47opelopaba 5496 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4941, 48bitri 275 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝑆‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
5038, 49sylibr 234 . . . . . . 7 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))
5135, 50jca 511 . . . . . 6 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
5251exlimiv 1930 . . . . 5 (∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
5331eqeq2d 2740 . . . . . . . 8 (𝑦 = ∅ → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, ∅⟩))
54 eqeq1 2733 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
5554anbi1d 631 . . . . . . . 8 (𝑦 = ∅ → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5653, 55anbi12d 632 . . . . . . 7 (𝑦 = ∅ → ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))))
5743, 56spcev 3572 . . . . . 6 ((𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → ∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5849, 57sylan2b 594 . . . . 5 ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)) → ∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5952, 58impbii 209 . . . 4 (∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6059exbii 1848 . . 3 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6129, 30, 603bitri 297 . 2 (𝑋 ∈ (𝑆‘∅) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6225satf0suc 35363 . . . . . . 7 (𝑧 ∈ ω → (𝑆‘suc 𝑧) = ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
6362eleq2d 2814 . . . . . 6 (𝑧 ∈ ω → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ 𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
64 elun 4116 . . . . . . 7 (𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
6564a1i 11 . . . . . 6 (𝑧 ∈ ω → (𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
66 elopab 5487 . . . . . . . 8 (𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
6766a1i 11 . . . . . . 7 (𝑧 ∈ ω → (𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
6867orbi2d 915 . . . . . 6 (𝑧 ∈ ω → ((𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
6963, 65, 683bitrd 305 . . . . 5 (𝑧 ∈ ω → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
7069adantr 480 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
71 simpr 484 . . . . . 6 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
72 opeq2 4838 . . . . . . . . . . . . . . . . 17 (𝑏 = ∅ → ⟨𝑎, 𝑏⟩ = ⟨𝑎, ∅⟩)
7372eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑏 = ∅ → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨𝑎, ∅⟩))
7473biimpd 229 . . . . . . . . . . . . . . 15 (𝑏 = ∅ → (𝑋 = ⟨𝑎, 𝑏⟩ → 𝑋 = ⟨𝑎, ∅⟩))
7574adantr 480 . . . . . . . . . . . . . 14 ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) → (𝑋 = ⟨𝑎, 𝑏⟩ → 𝑋 = ⟨𝑎, ∅⟩))
7675impcom 407 . . . . . . . . . . . . 13 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → 𝑋 = ⟨𝑎, ∅⟩)
77 eqidd 2730 . . . . . . . . . . . . . 14 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∅ = ∅)
78 simpr 484 . . . . . . . . . . . . . . 15 ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) → ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
7978adantl 481 . . . . . . . . . . . . . 14 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
8077, 79jca 511 . . . . . . . . . . . . 13 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
8176, 80jca 511 . . . . . . . . . . . 12 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8281exlimiv 1930 . . . . . . . . . . 11 (∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
83 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑏 = ∅ → (𝑏 = ∅ ↔ ∅ = ∅))
8483anbi1d 631 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8573, 84anbi12d 632 . . . . . . . . . . . 12 (𝑏 = ∅ → ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
8643, 85spcev 3572 . . . . . . . . . . 11 ((𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8782, 86impbii 209 . . . . . . . . . 10 (∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8887exbii 1848 . . . . . . . . 9 (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8988a1i 11 . . . . . . . 8 (𝑧 ∈ ω → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
90 opeq1 4837 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, ∅⟩ = ⟨𝑎, ∅⟩)
9190eqeq2d 2740 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑋 = ⟨𝑥, ∅⟩ ↔ 𝑋 = ⟨𝑎, ∅⟩))
92 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑎 = ((1st𝑢)⊼𝑔(1st𝑣))))
9392rexbidv 3157 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣))))
94 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑎 = ∀𝑔𝑖(1st𝑢)))
9594rexbidv 3157 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
9693, 95orbi12d 918 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
9796rexbidv 3157 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
9897anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑎 → ((∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
9991, 98anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
10099cbvexvw 2037 . . . . . . . 8 (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
10189, 100bitr4di 289 . . . . . . 7 (𝑧 ∈ ω → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
102101adantr 480 . . . . . 6 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
10371, 102orbi12d 918 . . . . 5 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → ((𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))) ↔ (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
104 19.43 1882 . . . . . 6 (∃𝑥((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
105 andi 1009 . . . . . . . 8 ((𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
106105bicomi 224 . . . . . . 7 (((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
107106exbii 1848 . . . . . 6 (∃𝑥((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
108104, 107bitr3i 277 . . . . 5 ((∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
109103, 108bitrdi 287 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → ((𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
11062eleq2d 2814 . . . . . . . . 9 (𝑧 ∈ ω → (⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧) ↔ ⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
111 elun 4116 . . . . . . . . . 10 (⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ ⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
112 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
113112rexbidv 3157 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
114 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝑎 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑢)))
115114rexbidv 3157 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
116113, 115orbi12d 918 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → ((∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
117116rexbidv 3157 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
11883, 117bi2anan9r 639 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = ∅) → ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
11942, 43, 118opelopaba 5496 . . . . . . . . . . 11 (⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
120119orbi2i 912 . . . . . . . . . 10 ((⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ ⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
121111, 120bitri 275 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
122110, 121bitrdi 287 . . . . . . . 8 (𝑧 ∈ ω → (⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
123122anbi2d 630 . . . . . . 7 (𝑧 ∈ ω → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
124123exbidv 1921 . . . . . 6 (𝑧 ∈ ω → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
125124bicomd 223 . . . . 5 (𝑧 ∈ ω → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
126125adantr 480 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
12770, 109, 1263bitrd 305 . . 3 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
128127ex 412 . 2 (𝑧 ∈ ω → ((𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))))
1296, 12, 18, 24, 61, 128finds 7872 1 (𝑁 ∈ ω → (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wrex 3053  cun 3912  c0 4296  cop 4595  {copab 5169  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  𝑔cgoe 35320  𝑔cgna 35321  𝑔cgol 35322   Sat csat 35323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-map 8801  df-goel 35327  df-sat 35330
This theorem is referenced by:  fmlasuc  35373
  Copyright terms: Public domain W3C validator