Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0op Structured version   Visualization version   GIF version

Theorem satf0op 34368
Description: An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023.)
Hypothesis
Ref Expression
satf0op.s 𝑆 = (∅ Sat ∅)
Assertion
Ref Expression
satf0op (𝑁 ∈ ω → (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑆   𝑥,𝑋

Proof of Theorem satf0op
Dummy variables 𝑖 𝑗 𝑦 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . 4 (𝑦 = ∅ → (𝑆𝑦) = (𝑆‘∅))
21eleq2d 2820 . . 3 (𝑦 = ∅ → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆‘∅)))
31eleq2d 2820 . . . . 5 (𝑦 = ∅ → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
43anbi2d 630 . . . 4 (𝑦 = ∅ → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))))
54exbidv 1925 . . 3 (𝑦 = ∅ → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))))
62, 5bibi12d 346 . 2 (𝑦 = ∅ → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆‘∅) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))))
7 fveq2 6892 . . . 4 (𝑦 = 𝑧 → (𝑆𝑦) = (𝑆𝑧))
87eleq2d 2820 . . 3 (𝑦 = 𝑧 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆𝑧)))
97eleq2d 2820 . . . . 5 (𝑦 = 𝑧 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))
109anbi2d 630 . . . 4 (𝑦 = 𝑧 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
1110exbidv 1925 . . 3 (𝑦 = 𝑧 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
128, 11bibi12d 346 . 2 (𝑦 = 𝑧 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))))
13 fveq2 6892 . . . 4 (𝑦 = suc 𝑧 → (𝑆𝑦) = (𝑆‘suc 𝑧))
1413eleq2d 2820 . . 3 (𝑦 = suc 𝑧 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆‘suc 𝑧)))
1513eleq2d 2820 . . . . 5 (𝑦 = suc 𝑧 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))
1615anbi2d 630 . . . 4 (𝑦 = suc 𝑧 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
1716exbidv 1925 . . 3 (𝑦 = suc 𝑧 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
1814, 17bibi12d 346 . 2 (𝑦 = suc 𝑧 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))))
19 fveq2 6892 . . . 4 (𝑦 = 𝑁 → (𝑆𝑦) = (𝑆𝑁))
2019eleq2d 2820 . . 3 (𝑦 = 𝑁 → (𝑋 ∈ (𝑆𝑦) ↔ 𝑋 ∈ (𝑆𝑁)))
2119eleq2d 2820 . . . . 5 (𝑦 = 𝑁 → (⟨𝑥, ∅⟩ ∈ (𝑆𝑦) ↔ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁)))
2221anbi2d 630 . . . 4 (𝑦 = 𝑁 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
2322exbidv 1925 . . 3 (𝑦 = 𝑁 → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
2420, 23bibi12d 346 . 2 (𝑦 = 𝑁 → ((𝑋 ∈ (𝑆𝑦) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑦))) ↔ (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁)))))
25 satf0op.s . . . . . 6 𝑆 = (∅ Sat ∅)
2625fveq1i 6893 . . . . 5 (𝑆‘∅) = ((∅ Sat ∅)‘∅)
27 satf00 34365 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
2826, 27eqtri 2761 . . . 4 (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
2928eleq2i 2826 . . 3 (𝑋 ∈ (𝑆‘∅) ↔ 𝑋 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
30 elopab 5528 . . 3 (𝑋 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
31 opeq2 4875 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ∅⟩)
3231adantr 482 . . . . . . . . . 10 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ∅⟩)
3332eqeq2d 2744 . . . . . . . . 9 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, ∅⟩))
3433biimpd 228 . . . . . . . 8 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (𝑋 = ⟨𝑥, 𝑦⟩ → 𝑋 = ⟨𝑥, ∅⟩))
3534impcom 409 . . . . . . 7 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑋 = ⟨𝑥, ∅⟩)
36 eqidd 2734 . . . . . . . . . 10 (𝑦 = ∅ → ∅ = ∅)
3736anim1i 616 . . . . . . . . 9 ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
3837adantl 483 . . . . . . . 8 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
39 satf00 34365 . . . . . . . . . . 11 ((∅ Sat ∅)‘∅) = {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))}
4026, 39eqtri 2761 . . . . . . . . . 10 (𝑆‘∅) = {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))}
4140eleq2i 2826 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ (𝑆‘∅) ↔ ⟨𝑥, ∅⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))})
42 vex 3479 . . . . . . . . . 10 𝑥 ∈ V
43 0ex 5308 . . . . . . . . . 10 ∅ ∈ V
44 eqeq1 2737 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
45 eqeq1 2737 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑖𝑔𝑗)))
46452rexbidv 3220 . . . . . . . . . . 11 (𝑦 = 𝑥 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4744, 46bi2anan9r 639 . . . . . . . . . 10 ((𝑦 = 𝑥𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
4842, 43, 47opelopaba 5537 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4941, 48bitri 275 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝑆‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
5038, 49sylibr 233 . . . . . . 7 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → ⟨𝑥, ∅⟩ ∈ (𝑆‘∅))
5135, 50jca 513 . . . . . 6 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
5251exlimiv 1934 . . . . 5 (∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
5331eqeq2d 2744 . . . . . . . 8 (𝑦 = ∅ → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, ∅⟩))
54 eqeq1 2737 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
5554anbi1d 631 . . . . . . . 8 (𝑦 = ∅ → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5653, 55anbi12d 632 . . . . . . 7 (𝑦 = ∅ → ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))))
5743, 56spcev 3597 . . . . . 6 ((𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → ∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5849, 57sylan2b 595 . . . . 5 ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)) → ∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))))
5952, 58impbii 208 . . . 4 (∃𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6059exbii 1851 . . 3 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6129, 30, 603bitri 297 . 2 (𝑋 ∈ (𝑆‘∅) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘∅)))
6225satf0suc 34367 . . . . . . 7 (𝑧 ∈ ω → (𝑆‘suc 𝑧) = ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
6362eleq2d 2820 . . . . . 6 (𝑧 ∈ ω → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ 𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
64 elun 4149 . . . . . . 7 (𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
6564a1i 11 . . . . . 6 (𝑧 ∈ ω → (𝑋 ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
66 elopab 5528 . . . . . . . 8 (𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
6766a1i 11 . . . . . . 7 (𝑧 ∈ ω → (𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
6867orbi2d 915 . . . . . 6 (𝑧 ∈ ω → ((𝑋 ∈ (𝑆𝑧) ∨ 𝑋 ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
6963, 65, 683bitrd 305 . . . . 5 (𝑧 ∈ ω → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
7069adantr 482 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ (𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))))
71 simpr 486 . . . . . 6 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))))
72 opeq2 4875 . . . . . . . . . . . . . . . . 17 (𝑏 = ∅ → ⟨𝑎, 𝑏⟩ = ⟨𝑎, ∅⟩)
7372eqeq2d 2744 . . . . . . . . . . . . . . . 16 (𝑏 = ∅ → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨𝑎, ∅⟩))
7473biimpd 228 . . . . . . . . . . . . . . 15 (𝑏 = ∅ → (𝑋 = ⟨𝑎, 𝑏⟩ → 𝑋 = ⟨𝑎, ∅⟩))
7574adantr 482 . . . . . . . . . . . . . 14 ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) → (𝑋 = ⟨𝑎, 𝑏⟩ → 𝑋 = ⟨𝑎, ∅⟩))
7675impcom 409 . . . . . . . . . . . . 13 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → 𝑋 = ⟨𝑎, ∅⟩)
77 eqidd 2734 . . . . . . . . . . . . . 14 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∅ = ∅)
78 simpr 486 . . . . . . . . . . . . . . 15 ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) → ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
7978adantl 483 . . . . . . . . . . . . . 14 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
8077, 79jca 513 . . . . . . . . . . . . 13 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
8176, 80jca 513 . . . . . . . . . . . 12 ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8281exlimiv 1934 . . . . . . . . . . 11 (∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
83 eqeq1 2737 . . . . . . . . . . . . . 14 (𝑏 = ∅ → (𝑏 = ∅ ↔ ∅ = ∅))
8483anbi1d 631 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8573, 84anbi12d 632 . . . . . . . . . . . 12 (𝑏 = ∅ → ((𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
8643, 85spcev 3597 . . . . . . . . . . 11 ((𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) → ∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8782, 86impbii 208 . . . . . . . . . 10 (∃𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8887exbii 1851 . . . . . . . . 9 (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
8988a1i 11 . . . . . . . 8 (𝑧 ∈ ω → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
90 opeq1 4874 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, ∅⟩ = ⟨𝑎, ∅⟩)
9190eqeq2d 2744 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑋 = ⟨𝑥, ∅⟩ ↔ 𝑋 = ⟨𝑎, ∅⟩))
92 eqeq1 2737 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑎 = ((1st𝑢)⊼𝑔(1st𝑣))))
9392rexbidv 3179 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣))))
94 eqeq1 2737 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑎 = ∀𝑔𝑖(1st𝑢)))
9594rexbidv 3179 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))
9693, 95orbi12d 918 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
9796rexbidv 3179 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))
9897anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑎 → ((∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
9991, 98anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) ↔ (𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))))
10099cbvexvw 2041 . . . . . . . 8 (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑎(𝑋 = ⟨𝑎, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))))
10189, 100bitr4di 289 . . . . . . 7 (𝑧 ∈ ω → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
102101adantr 482 . . . . . 6 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
10371, 102orbi12d 918 . . . . 5 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → ((𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))) ↔ (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
104 19.43 1886 . . . . . 6 (∃𝑥((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
105 andi 1007 . . . . . . . 8 ((𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
106105bicomi 223 . . . . . . 7 (((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
107106exbii 1851 . . . . . 6 (∃𝑥((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ (𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
108104, 107bitr3i 277 . . . . 5 ((∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)) ∨ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
109103, 108bitrdi 287 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → ((𝑋 ∈ (𝑆𝑧) ∨ ∃𝑎𝑏(𝑋 = ⟨𝑎, 𝑏⟩ ∧ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
11062eleq2d 2820 . . . . . . . . 9 (𝑧 ∈ ω → (⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧) ↔ ⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))})))
111 elun 4149 . . . . . . . . . 10 (⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ ⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}))
112 eqeq1 2737 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
113112rexbidv 3179 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
114 eqeq1 2737 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝑎 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑢)))
115114rexbidv 3179 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
116113, 115orbi12d 918 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → ((∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
117116rexbidv 3179 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
11883, 117bi2anan9r 639 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = ∅) → ((𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
11942, 43, 118opelopaba 5537 . . . . . . . . . . 11 (⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
120119orbi2i 912 . . . . . . . . . 10 ((⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ ⟨𝑥, ∅⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
121111, 120bitri 275 . . . . . . . . 9 (⟨𝑥, ∅⟩ ∈ ((𝑆𝑧) ∪ {⟨𝑎, 𝑏⟩ ∣ (𝑏 = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑎 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑎 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
122110, 121bitrdi 287 . . . . . . . 8 (𝑧 ∈ ω → (⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧) ↔ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))))
123122anbi2d 630 . . . . . . 7 (𝑧 ∈ ω → ((𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)) ↔ (𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
124123exbidv 1925 . . . . . 6 (𝑧 ∈ ω → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))))
125124bicomd 222 . . . . 5 (𝑧 ∈ ω → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
126125adantr 482 . . . 4 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ (⟨𝑥, ∅⟩ ∈ (𝑆𝑧) ∨ (∅ = ∅ ∧ ∃𝑢 ∈ (𝑆𝑧)(∃𝑣 ∈ (𝑆𝑧)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
12770, 109, 1263bitrd 305 . . 3 ((𝑧 ∈ ω ∧ (𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧)))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧))))
128127ex 414 . 2 (𝑧 ∈ ω → ((𝑋 ∈ (𝑆𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑧))) → (𝑋 ∈ (𝑆‘suc 𝑧) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆‘suc 𝑧)))))
1296, 12, 18, 24, 61, 128finds 7889 1 (𝑁 ∈ ω → (𝑋 ∈ (𝑆𝑁) ↔ ∃𝑥(𝑋 = ⟨𝑥, ∅⟩ ∧ ⟨𝑥, ∅⟩ ∈ (𝑆𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wex 1782  wcel 2107  wrex 3071  cun 3947  c0 4323  cop 4635  {copab 5211  suc csuc 6367  cfv 6544  (class class class)co 7409  ωcom 7855  1st c1st 7973  𝑔cgoe 34324  𝑔cgna 34325  𝑔cgol 34326   Sat csat 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-map 8822  df-goel 34331  df-sat 34334
This theorem is referenced by:  fmlasuc  34377
  Copyright terms: Public domain W3C validator