Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsn | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsng 4575 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sn 4562 |
This theorem is referenced by: velsn 4577 opthwiener 5428 brsnop 5436 opthprc 5651 dmsnn0 6110 dmsnopg 6116 cnvcnvsn 6122 snsn0non 6385 funconstss 6933 fniniseg 6937 fniniseg2 6939 fsn 7007 fconstfv 7088 eusvobj2 7268 fnse 7974 wfrlem14OLD 8153 fisn 9186 axdc3lem4 10209 axdc4lem 10211 axcclem 10213 opelreal 10886 seqid3 13767 seqz 13771 1exp 13812 hashf1lem2 14170 fprodn0f 15701 imasaddfnlem 17239 initoid 17716 termoid 17717 0subm 18456 smndex1mgm 18546 smndex1n0mnd 18551 grpinvfval 18618 0subg 18780 0nsg 18797 sylow2alem2 19223 gsumval3 19508 gsumzaddlem 19522 kerf1ghm 19987 lsssn0 20209 r0cld 22889 alexsubALTlem2 23199 tgphaus 23268 isusp 23413 i1f1lem 24853 ig1pcl 25340 plyco0 25353 plyeq0lem 25371 plycj 25438 wilthlem2 26218 dchrfi 26403 snstriedgval 27408 incistruhgr 27449 1loopgrnb0 27869 umgr2v2enb1 27893 usgr2pthlem 28131 hsn0elch 29610 h1de2ctlem 29917 atomli 30744 suppiniseg 31020 1stpreimas 31038 gsummpt2d 31309 kerunit 31522 qqhval2lem 31931 qqhf 31936 qqhre 31970 esum2dlem 32060 eulerpartlemb 32335 bnj149 32855 subfacp1lem6 33147 xpord2pred 33792 xpord2ind 33794 xpord3pred 33798 ellimits 34212 bj-0nel1 35143 bj-isrvec 35465 poimirlem18 35795 poimirlem21 35798 poimirlem22 35799 poimirlem31 35808 poimirlem32 35809 itg2addnclem2 35829 ftc1anclem3 35852 0idl 36183 keridl 36190 smprngopr 36210 isdmn3 36232 ellkr 37103 diblss 39184 dihmeetlem4preN 39320 dihmeetlem13N 39333 sticksstones11 40112 0prjspnrel 40464 pw2f1ocnv 40859 fvnonrel 41205 snhesn 41394 unirnmapsn 42754 sge0fodjrnlem 43954 lindslinindsimp1 45798 |
Copyright terms: Public domain | W3C validator |