Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsn | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsng 4572 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sn 4559 |
This theorem is referenced by: velsn 4574 opthwiener 5422 brsnop 5430 opthprc 5642 dmsnn0 6099 dmsnopg 6105 cnvcnvsn 6111 snsn0non 6370 funconstss 6915 fniniseg 6919 fniniseg2 6921 fsn 6989 fconstfv 7070 eusvobj2 7248 fnse 7945 wfrlem14OLD 8124 fisn 9116 axdc3lem4 10140 axdc4lem 10142 axcclem 10144 opelreal 10817 seqid3 13695 seqz 13699 1exp 13740 hashf1lem2 14098 fprodn0f 15629 imasaddfnlem 17156 initoid 17632 termoid 17633 0subm 18371 smndex1mgm 18461 smndex1n0mnd 18466 grpinvfval 18533 0subg 18695 0nsg 18712 sylow2alem2 19138 gsumval3 19423 gsumzaddlem 19437 kerf1ghm 19902 lsssn0 20124 r0cld 22797 alexsubALTlem2 23107 tgphaus 23176 isusp 23321 i1f1lem 24758 ig1pcl 25245 plyco0 25258 plyeq0lem 25276 plycj 25343 wilthlem2 26123 dchrfi 26308 snstriedgval 27311 incistruhgr 27352 1loopgrnb0 27772 umgr2v2enb1 27796 usgr2pthlem 28032 hsn0elch 29511 h1de2ctlem 29818 atomli 30645 suppiniseg 30922 1stpreimas 30940 gsummpt2d 31211 kerunit 31424 qqhval2lem 31831 qqhf 31836 qqhre 31870 esum2dlem 31960 eulerpartlemb 32235 bnj149 32755 subfacp1lem6 33047 xpord2pred 33719 xpord2ind 33721 xpord3pred 33725 ellimits 34139 bj-0nel1 35070 bj-isrvec 35392 poimirlem18 35722 poimirlem21 35725 poimirlem22 35726 poimirlem31 35735 poimirlem32 35736 itg2addnclem2 35756 ftc1anclem3 35779 0idl 36110 keridl 36117 smprngopr 36137 isdmn3 36159 ellkr 37030 diblss 39111 dihmeetlem4preN 39247 dihmeetlem13N 39260 sticksstones11 40040 0prjspnrel 40385 pw2f1ocnv 40775 fvnonrel 41094 snhesn 41283 unirnmapsn 42643 sge0fodjrnlem 43844 lindslinindsimp1 45686 |
Copyright terms: Public domain | W3C validator |