Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsn | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsng 4581 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2110 Vcvv 3431 {csn 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-sn 4568 |
This theorem is referenced by: velsn 4583 opthwiener 5432 brsnop 5440 opthprc 5652 dmsnn0 6109 dmsnopg 6115 cnvcnvsn 6121 snsn0non 6384 funconstss 6930 fniniseg 6934 fniniseg2 6936 fsn 7004 fconstfv 7085 eusvobj2 7264 fnse 7965 wfrlem14OLD 8144 fisn 9164 axdc3lem4 10210 axdc4lem 10212 axcclem 10214 opelreal 10887 seqid3 13765 seqz 13769 1exp 13810 hashf1lem2 14168 fprodn0f 15699 imasaddfnlem 17237 initoid 17714 termoid 17715 0subm 18454 smndex1mgm 18544 smndex1n0mnd 18549 grpinvfval 18616 0subg 18778 0nsg 18795 sylow2alem2 19221 gsumval3 19506 gsumzaddlem 19520 kerf1ghm 19985 lsssn0 20207 r0cld 22887 alexsubALTlem2 23197 tgphaus 23266 isusp 23411 i1f1lem 24851 ig1pcl 25338 plyco0 25351 plyeq0lem 25369 plycj 25436 wilthlem2 26216 dchrfi 26401 snstriedgval 27406 incistruhgr 27447 1loopgrnb0 27867 umgr2v2enb1 27891 usgr2pthlem 28127 hsn0elch 29606 h1de2ctlem 29913 atomli 30740 suppiniseg 31016 1stpreimas 31034 gsummpt2d 31305 kerunit 31518 qqhval2lem 31927 qqhf 31932 qqhre 31966 esum2dlem 32056 eulerpartlemb 32331 bnj149 32851 subfacp1lem6 33143 xpord2pred 33788 xpord2ind 33790 xpord3pred 33794 ellimits 34208 bj-0nel1 35139 bj-isrvec 35461 poimirlem18 35791 poimirlem21 35794 poimirlem22 35795 poimirlem31 35804 poimirlem32 35805 itg2addnclem2 35825 ftc1anclem3 35848 0idl 36179 keridl 36186 smprngopr 36206 isdmn3 36228 ellkr 37099 diblss 39180 dihmeetlem4preN 39316 dihmeetlem13N 39329 sticksstones11 40109 0prjspnrel 40461 pw2f1ocnv 40856 fvnonrel 41175 snhesn 41364 unirnmapsn 42724 sge0fodjrnlem 43925 lindslinindsimp1 45767 |
Copyright terms: Public domain | W3C validator |