Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplth | Structured version Visualization version GIF version |
Description: The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5395). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-2uplth | ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr1eq 35188 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr1 ⦅𝐴, 𝐵⦆ = pr1 ⦅𝐶, 𝐷⦆) | |
2 | bj-pr21val 35199 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
3 | bj-pr21val 35199 | . . . 4 ⊢ pr1 ⦅𝐶, 𝐷⦆ = 𝐶 | |
4 | 1, 2, 3 | 3eqtr3g 2803 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐴 = 𝐶) |
5 | bj-pr2eq 35202 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr2 ⦅𝐴, 𝐵⦆ = pr2 ⦅𝐶, 𝐷⦆) | |
6 | bj-pr22val 35205 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
7 | bj-pr22val 35205 | . . . 4 ⊢ pr2 ⦅𝐶, 𝐷⦆ = 𝐷 | |
8 | 5, 6, 7 | 3eqtr3g 2803 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐵 = 𝐷) |
9 | 4, 8 | jca 512 | . 2 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
10 | bj-2upleq 35198 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆)) | |
11 | 10 | imp 407 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆) |
12 | 9, 11 | impbii 208 | 1 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 pr1 bj-cpr1 35186 ⦅bj-c2uple 35196 pr2 bj-cpr2 35200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-suc 6271 df-1o 8288 df-bj-sngl 35152 df-bj-tag 35161 df-bj-proj 35177 df-bj-1upl 35184 df-bj-pr1 35187 df-bj-2upl 35197 df-bj-pr2 35201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |