| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplth | Structured version Visualization version GIF version | ||
| Description: The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5436). (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2uplth | ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr1eq 36990 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr1 ⦅𝐴, 𝐵⦆ = pr1 ⦅𝐶, 𝐷⦆) | |
| 2 | bj-pr21val 37001 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
| 3 | bj-pr21val 37001 | . . . 4 ⊢ pr1 ⦅𝐶, 𝐷⦆ = 𝐶 | |
| 4 | 1, 2, 3 | 3eqtr3g 2787 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐴 = 𝐶) |
| 5 | bj-pr2eq 37004 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr2 ⦅𝐴, 𝐵⦆ = pr2 ⦅𝐶, 𝐷⦆) | |
| 6 | bj-pr22val 37007 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
| 7 | bj-pr22val 37007 | . . . 4 ⊢ pr2 ⦅𝐶, 𝐷⦆ = 𝐷 | |
| 8 | 5, 6, 7 | 3eqtr3g 2787 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐵 = 𝐷) |
| 9 | 4, 8 | jca 511 | . 2 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 10 | bj-2upleq 37000 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆)) | |
| 11 | 10 | imp 406 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆) |
| 12 | 9, 11 | impbii 209 | 1 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 pr1 bj-cpr1 36988 ⦅bj-c2uple 36998 pr2 bj-cpr2 37002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-1o 8434 df-bj-sngl 36954 df-bj-tag 36963 df-bj-proj 36979 df-bj-1upl 36986 df-bj-pr1 36989 df-bj-2upl 36999 df-bj-pr2 37003 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |