Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2uplth Structured version   Visualization version   GIF version

Theorem bj-2uplth 36987
Description: The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5496). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-2uplth (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem bj-2uplth
StepHypRef Expression
1 bj-pr1eq 36968 . . . 4 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr1𝐴, 𝐵⦆ = pr1𝐶, 𝐷⦆)
2 bj-pr21val 36979 . . . 4 pr1𝐴, 𝐵⦆ = 𝐴
3 bj-pr21val 36979 . . . 4 pr1𝐶, 𝐷⦆ = 𝐶
41, 2, 33eqtr3g 2803 . . 3 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐴 = 𝐶)
5 bj-pr2eq 36982 . . . 4 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr2𝐴, 𝐵⦆ = pr2𝐶, 𝐷⦆)
6 bj-pr22val 36985 . . . 4 pr2𝐴, 𝐵⦆ = 𝐵
7 bj-pr22val 36985 . . . 4 pr2𝐶, 𝐷⦆ = 𝐷
85, 6, 73eqtr3g 2803 . . 3 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐵 = 𝐷)
94, 8jca 511 . 2 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → (𝐴 = 𝐶𝐵 = 𝐷))
10 bj-2upleq 36978 . . 3 (𝐴 = 𝐶 → (𝐵 = 𝐷 → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆))
1110imp 406 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆)
129, 11impbii 209 1 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  pr1 bj-cpr1 36966  bj-c2uple 36976  pr2 bj-cpr2 36980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-1o 8522  df-bj-sngl 36932  df-bj-tag 36941  df-bj-proj 36957  df-bj-1upl 36964  df-bj-pr1 36967  df-bj-2upl 36977  df-bj-pr2 36981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator