| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplth | Structured version Visualization version GIF version | ||
| Description: The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5421). (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2uplth | ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr1eq 37057 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr1 ⦅𝐴, 𝐵⦆ = pr1 ⦅𝐶, 𝐷⦆) | |
| 2 | bj-pr21val 37068 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
| 3 | bj-pr21val 37068 | . . . 4 ⊢ pr1 ⦅𝐶, 𝐷⦆ = 𝐶 | |
| 4 | 1, 2, 3 | 3eqtr3g 2791 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐴 = 𝐶) |
| 5 | bj-pr2eq 37071 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr2 ⦅𝐴, 𝐵⦆ = pr2 ⦅𝐶, 𝐷⦆) | |
| 6 | bj-pr22val 37074 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
| 7 | bj-pr22val 37074 | . . . 4 ⊢ pr2 ⦅𝐶, 𝐷⦆ = 𝐷 | |
| 8 | 5, 6, 7 | 3eqtr3g 2791 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐵 = 𝐷) |
| 9 | 4, 8 | jca 511 | . 2 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 10 | bj-2upleq 37067 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆)) | |
| 11 | 10 | imp 406 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆) |
| 12 | 9, 11 | impbii 209 | 1 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 pr1 bj-cpr1 37055 ⦅bj-c2uple 37065 pr2 bj-cpr2 37069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-1o 8394 df-bj-sngl 37021 df-bj-tag 37030 df-bj-proj 37046 df-bj-1upl 37053 df-bj-pr1 37056 df-bj-2upl 37066 df-bj-pr2 37070 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |