![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplth | Structured version Visualization version GIF version |
Description: The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5477). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-2uplth | ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr1eq 35883 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr1 ⦅𝐴, 𝐵⦆ = pr1 ⦅𝐶, 𝐷⦆) | |
2 | bj-pr21val 35894 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
3 | bj-pr21val 35894 | . . . 4 ⊢ pr1 ⦅𝐶, 𝐷⦆ = 𝐶 | |
4 | 1, 2, 3 | 3eqtr3g 2796 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐴 = 𝐶) |
5 | bj-pr2eq 35897 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr2 ⦅𝐴, 𝐵⦆ = pr2 ⦅𝐶, 𝐷⦆) | |
6 | bj-pr22val 35900 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
7 | bj-pr22val 35900 | . . . 4 ⊢ pr2 ⦅𝐶, 𝐷⦆ = 𝐷 | |
8 | 5, 6, 7 | 3eqtr3g 2796 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐵 = 𝐷) |
9 | 4, 8 | jca 513 | . 2 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
10 | bj-2upleq 35893 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆)) | |
11 | 10 | imp 408 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆) |
12 | 9, 11 | impbii 208 | 1 ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 pr1 bj-cpr1 35881 ⦅bj-c2uple 35891 pr2 bj-cpr2 35895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-1o 8466 df-bj-sngl 35847 df-bj-tag 35856 df-bj-proj 35872 df-bj-1upl 35879 df-bj-pr1 35882 df-bj-2upl 35892 df-bj-pr2 35896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |