Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr21val Structured version   Visualization version   GIF version

Theorem bj-pr21val 36952
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr21val pr1𝐴, 𝐵⦆ = 𝐴

Proof of Theorem bj-pr21val
StepHypRef Expression
1 df-bj-2upl 36950 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr1eq 36941 . . 3 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . 2 pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr1un 36942 . 2 pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵))
5 bj-pr11val 36944 . . . 4 pr1𝐴⦆ = 𝐴
6 bj-pr1val 36943 . . . . 5 pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅)
7 1n0 8494 . . . . . . 7 1o ≠ ∅
87neii 2933 . . . . . 6 ¬ 1o = ∅
98iffalsei 4508 . . . . 5 if(1o = ∅, 𝐵, ∅) = ∅
106, 9eqtri 2757 . . . 4 pr1 ({1o} × tag 𝐵) = ∅
115, 10uneq12i 4139 . . 3 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅)
12 un0 4367 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtri 2757 . 2 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴
143, 4, 133eqtri 2761 1 pr1𝐴, 𝐵⦆ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3922  c0 4306  ifcif 4498  {csn 4599   × cxp 5649  1oc1o 8467  tag bj-ctag 36913  bj-c1upl 36936  pr1 bj-cpr1 36939  bj-c2uple 36949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-xp 5657  df-rel 5658  df-cnv 5659  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-suc 6355  df-1o 8474  df-bj-sngl 36905  df-bj-tag 36914  df-bj-proj 36930  df-bj-1upl 36937  df-bj-pr1 36940  df-bj-2upl 36950
This theorem is referenced by:  bj-2uplth  36960  bj-2uplex  36961
  Copyright terms: Public domain W3C validator