Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr21val Structured version   Visualization version   GIF version

Theorem bj-pr21val 35251
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr21val pr1𝐴, 𝐵⦆ = 𝐴

Proof of Theorem bj-pr21val
StepHypRef Expression
1 df-bj-2upl 35249 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr1eq 35240 . . 3 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . 2 pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr1un 35241 . 2 pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵))
5 bj-pr11val 35243 . . . 4 pr1𝐴⦆ = 𝐴
6 bj-pr1val 35242 . . . . 5 pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅)
7 1n0 8349 . . . . . . 7 1o ≠ ∅
87neii 2943 . . . . . 6 ¬ 1o = ∅
98iffalsei 4475 . . . . 5 if(1o = ∅, 𝐵, ∅) = ∅
106, 9eqtri 2764 . . . 4 pr1 ({1o} × tag 𝐵) = ∅
115, 10uneq12i 4101 . . 3 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅)
12 un0 4330 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtri 2764 . 2 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴
143, 4, 133eqtri 2768 1 pr1𝐴, 𝐵⦆ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3890  c0 4262  ifcif 4465  {csn 4565   × cxp 5598  1oc1o 8321  tag bj-ctag 35212  bj-c1upl 35235  pr1 bj-cpr1 35238  bj-c2uple 35248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-suc 6287  df-1o 8328  df-bj-sngl 35204  df-bj-tag 35213  df-bj-proj 35229  df-bj-1upl 35236  df-bj-pr1 35239  df-bj-2upl 35249
This theorem is referenced by:  bj-2uplth  35259  bj-2uplex  35260
  Copyright terms: Public domain W3C validator