| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version | ||
| Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 36950 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-pr1eq 36941 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 4 | bj-pr1un 36942 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
| 5 | bj-pr11val 36944 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 6 | bj-pr1val 36943 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
| 7 | 1n0 8494 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 8 | 7 | neii 2933 | . . . . . 6 ⊢ ¬ 1o = ∅ |
| 9 | 8 | iffalsei 4508 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
| 10 | 6, 9 | eqtri 2757 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
| 11 | 5, 10 | uneq12i 4139 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
| 12 | un0 4367 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 13 | 11, 12 | eqtri 2757 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
| 14 | 3, 4, 13 | 3eqtri 2761 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3922 ∅c0 4306 ifcif 4498 {csn 4599 × cxp 5649 1oc1o 8467 tag bj-ctag 36913 ⦅bj-c1upl 36936 pr1 bj-cpr1 36939 ⦅bj-c2uple 36949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-xp 5657 df-rel 5658 df-cnv 5659 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-suc 6355 df-1o 8474 df-bj-sngl 36905 df-bj-tag 36914 df-bj-proj 36930 df-bj-1upl 36937 df-bj-pr1 36940 df-bj-2upl 36950 |
| This theorem is referenced by: bj-2uplth 36960 bj-2uplex 36961 |
| Copyright terms: Public domain | W3C validator |