Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version |
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 35249 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr1eq 35240 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr1un 35241 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
5 | bj-pr11val 35243 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
6 | bj-pr1val 35242 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
7 | 1n0 8349 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
8 | 7 | neii 2943 | . . . . . 6 ⊢ ¬ 1o = ∅ |
9 | 8 | iffalsei 4475 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
10 | 6, 9 | eqtri 2764 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
11 | 5, 10 | uneq12i 4101 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
12 | un0 4330 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
13 | 11, 12 | eqtri 2764 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
14 | 3, 4, 13 | 3eqtri 2768 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3890 ∅c0 4262 ifcif 4465 {csn 4565 × cxp 5598 1oc1o 8321 tag bj-ctag 35212 ⦅bj-c1upl 35235 pr1 bj-cpr1 35238 ⦅bj-c2uple 35248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-suc 6287 df-1o 8328 df-bj-sngl 35204 df-bj-tag 35213 df-bj-proj 35229 df-bj-1upl 35236 df-bj-pr1 35239 df-bj-2upl 35249 |
This theorem is referenced by: bj-2uplth 35259 bj-2uplex 35260 |
Copyright terms: Public domain | W3C validator |