Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr21val Structured version   Visualization version   GIF version

Theorem bj-pr21val 36384
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr21val pr1𝐴, 𝐵⦆ = 𝐴

Proof of Theorem bj-pr21val
StepHypRef Expression
1 df-bj-2upl 36382 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr1eq 36373 . . 3 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . 2 pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr1un 36374 . 2 pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵))
5 bj-pr11val 36376 . . . 4 pr1𝐴⦆ = 𝐴
6 bj-pr1val 36375 . . . . 5 pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅)
7 1n0 8483 . . . . . . 7 1o ≠ ∅
87neii 2934 . . . . . 6 ¬ 1o = ∅
98iffalsei 4530 . . . . 5 if(1o = ∅, 𝐵, ∅) = ∅
106, 9eqtri 2752 . . . 4 pr1 ({1o} × tag 𝐵) = ∅
115, 10uneq12i 4153 . . 3 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅)
12 un0 4382 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtri 2752 . 2 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴
143, 4, 133eqtri 2756 1 pr1𝐴, 𝐵⦆ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3938  c0 4314  ifcif 4520  {csn 4620   × cxp 5664  1oc1o 8454  tag bj-ctag 36345  bj-c1upl 36368  pr1 bj-cpr1 36371  bj-c2uple 36381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-suc 6360  df-1o 8461  df-bj-sngl 36337  df-bj-tag 36346  df-bj-proj 36362  df-bj-1upl 36369  df-bj-pr1 36372  df-bj-2upl 36382
This theorem is referenced by:  bj-2uplth  36392  bj-2uplex  36393
  Copyright terms: Public domain W3C validator