| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version | ||
| Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 36995 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-pr1eq 36986 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 4 | bj-pr1un 36987 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
| 5 | bj-pr11val 36989 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 6 | bj-pr1val 36988 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
| 7 | 1n0 8406 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 8 | 7 | neii 2927 | . . . . . 6 ⊢ ¬ 1o = ∅ |
| 9 | 8 | iffalsei 4486 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
| 10 | 6, 9 | eqtri 2752 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
| 11 | 5, 10 | uneq12i 4117 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
| 12 | un0 4345 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 13 | 11, 12 | eqtri 2752 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
| 14 | 3, 4, 13 | 3eqtri 2756 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3901 ∅c0 4284 ifcif 4476 {csn 4577 × cxp 5617 1oc1o 8381 tag bj-ctag 36958 ⦅bj-c1upl 36981 pr1 bj-cpr1 36984 ⦅bj-c2uple 36994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6313 df-1o 8388 df-bj-sngl 36950 df-bj-tag 36959 df-bj-proj 36975 df-bj-1upl 36982 df-bj-pr1 36985 df-bj-2upl 36995 |
| This theorem is referenced by: bj-2uplth 37005 bj-2uplex 37006 |
| Copyright terms: Public domain | W3C validator |