Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version |
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 35180 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr1eq 35171 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr1un 35172 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
5 | bj-pr11val 35174 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
6 | bj-pr1val 35173 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
7 | 1n0 8300 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
8 | 7 | neii 2946 | . . . . . 6 ⊢ ¬ 1o = ∅ |
9 | 8 | iffalsei 4474 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
10 | 6, 9 | eqtri 2767 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
11 | 5, 10 | uneq12i 4099 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
12 | un0 4329 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
13 | 11, 12 | eqtri 2767 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
14 | 3, 4, 13 | 3eqtri 2771 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∪ cun 3889 ∅c0 4261 ifcif 4464 {csn 4566 × cxp 5586 1oc1o 8274 tag bj-ctag 35143 ⦅bj-c1upl 35166 pr1 bj-cpr1 35169 ⦅bj-c2uple 35179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-suc 6269 df-1o 8281 df-bj-sngl 35135 df-bj-tag 35144 df-bj-proj 35160 df-bj-1upl 35167 df-bj-pr1 35170 df-bj-2upl 35180 |
This theorem is referenced by: bj-2uplth 35190 bj-2uplex 35191 |
Copyright terms: Public domain | W3C validator |