Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr21val Structured version   Visualization version   GIF version

Theorem bj-pr21val 37036
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr21val pr1𝐴, 𝐵⦆ = 𝐴

Proof of Theorem bj-pr21val
StepHypRef Expression
1 df-bj-2upl 37034 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr1eq 37025 . . 3 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . 2 pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr1un 37026 . 2 pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵))
5 bj-pr11val 37028 . . . 4 pr1𝐴⦆ = 𝐴
6 bj-pr1val 37027 . . . . 5 pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅)
7 1n0 8505 . . . . . . 7 1o ≠ ∅
87neii 2935 . . . . . 6 ¬ 1o = ∅
98iffalsei 4515 . . . . 5 if(1o = ∅, 𝐵, ∅) = ∅
106, 9eqtri 2759 . . . 4 pr1 ({1o} × tag 𝐵) = ∅
115, 10uneq12i 4146 . . 3 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅)
12 un0 4374 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtri 2759 . 2 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴
143, 4, 133eqtri 2763 1 pr1𝐴, 𝐵⦆ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3929  c0 4313  ifcif 4505  {csn 4606   × cxp 5657  1oc1o 8478  tag bj-ctag 36997  bj-c1upl 37020  pr1 bj-cpr1 37023  bj-c2uple 37033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-1o 8485  df-bj-sngl 36989  df-bj-tag 36998  df-bj-proj 37014  df-bj-1upl 37021  df-bj-pr1 37024  df-bj-2upl 37034
This theorem is referenced by:  bj-2uplth  37044  bj-2uplex  37045
  Copyright terms: Public domain W3C validator