| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version | ||
| Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 37055 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-pr1eq 37046 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 4 | bj-pr1un 37047 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
| 5 | bj-pr11val 37049 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 6 | bj-pr1val 37048 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
| 7 | 1n0 8403 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 8 | 7 | neii 2930 | . . . . . 6 ⊢ ¬ 1o = ∅ |
| 9 | 8 | iffalsei 4482 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
| 10 | 6, 9 | eqtri 2754 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
| 11 | 5, 10 | uneq12i 4113 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
| 12 | un0 4341 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 13 | 11, 12 | eqtri 2754 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
| 14 | 3, 4, 13 | 3eqtri 2758 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ∅c0 4280 ifcif 4472 {csn 4573 × cxp 5612 1oc1o 8378 tag bj-ctag 37018 ⦅bj-c1upl 37041 pr1 bj-cpr1 37044 ⦅bj-c2uple 37054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-1o 8385 df-bj-sngl 37010 df-bj-tag 37019 df-bj-proj 37035 df-bj-1upl 37042 df-bj-pr1 37045 df-bj-2upl 37055 |
| This theorem is referenced by: bj-2uplth 37065 bj-2uplex 37066 |
| Copyright terms: Public domain | W3C validator |