Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr21val Structured version   Visualization version   GIF version

Theorem bj-pr21val 36979
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr21val pr1𝐴, 𝐵⦆ = 𝐴

Proof of Theorem bj-pr21val
StepHypRef Expression
1 df-bj-2upl 36977 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr1eq 36968 . . 3 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . 2 pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr1un 36969 . 2 pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵))
5 bj-pr11val 36971 . . . 4 pr1𝐴⦆ = 𝐴
6 bj-pr1val 36970 . . . . 5 pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅)
7 1n0 8544 . . . . . . 7 1o ≠ ∅
87neii 2948 . . . . . 6 ¬ 1o = ∅
98iffalsei 4558 . . . . 5 if(1o = ∅, 𝐵, ∅) = ∅
106, 9eqtri 2768 . . . 4 pr1 ({1o} × tag 𝐵) = ∅
115, 10uneq12i 4189 . . 3 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅)
12 un0 4417 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtri 2768 . 2 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴
143, 4, 133eqtri 2772 1 pr1𝐴, 𝐵⦆ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  c0 4352  ifcif 4548  {csn 4648   × cxp 5698  1oc1o 8515  tag bj-ctag 36940  bj-c1upl 36963  pr1 bj-cpr1 36966  bj-c2uple 36976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-1o 8522  df-bj-sngl 36932  df-bj-tag 36941  df-bj-proj 36957  df-bj-1upl 36964  df-bj-pr1 36967  df-bj-2upl 36977
This theorem is referenced by:  bj-2uplth  36987  bj-2uplex  36988
  Copyright terms: Public domain W3C validator