Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version |
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 35197 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr1eq 35188 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr1un 35189 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
5 | bj-pr11val 35191 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
6 | bj-pr1val 35190 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
7 | 1n0 8309 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
8 | 7 | neii 2947 | . . . . . 6 ⊢ ¬ 1o = ∅ |
9 | 8 | iffalsei 4475 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
10 | 6, 9 | eqtri 2768 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
11 | 5, 10 | uneq12i 4100 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
12 | un0 4330 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
13 | 11, 12 | eqtri 2768 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
14 | 3, 4, 13 | 3eqtri 2772 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3890 ∅c0 4262 ifcif 4465 {csn 4567 × cxp 5588 1oc1o 8281 tag bj-ctag 35160 ⦅bj-c1upl 35183 pr1 bj-cpr1 35186 ⦅bj-c2uple 35196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-suc 6271 df-1o 8288 df-bj-sngl 35152 df-bj-tag 35161 df-bj-proj 35177 df-bj-1upl 35184 df-bj-pr1 35187 df-bj-2upl 35197 |
This theorem is referenced by: bj-2uplth 35207 bj-2uplex 35208 |
Copyright terms: Public domain | W3C validator |