Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr21val Structured version   Visualization version   GIF version

Theorem bj-pr21val 37001
Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr21val pr1𝐴, 𝐵⦆ = 𝐴

Proof of Theorem bj-pr21val
StepHypRef Expression
1 df-bj-2upl 36999 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr1eq 36990 . . 3 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . 2 pr1𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr1un 36991 . 2 pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵))
5 bj-pr11val 36993 . . . 4 pr1𝐴⦆ = 𝐴
6 bj-pr1val 36992 . . . . 5 pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅)
7 1n0 8452 . . . . . . 7 1o ≠ ∅
87neii 2927 . . . . . 6 ¬ 1o = ∅
98iffalsei 4498 . . . . 5 if(1o = ∅, 𝐵, ∅) = ∅
106, 9eqtri 2752 . . . 4 pr1 ({1o} × tag 𝐵) = ∅
115, 10uneq12i 4129 . . 3 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅)
12 un0 4357 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtri 2752 . 2 (pr1𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴
143, 4, 133eqtri 2756 1 pr1𝐴, 𝐵⦆ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3912  c0 4296  ifcif 4488  {csn 4589   × cxp 5636  1oc1o 8427  tag bj-ctag 36962  bj-c1upl 36985  pr1 bj-cpr1 36988  bj-c2uple 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-1o 8434  df-bj-sngl 36954  df-bj-tag 36963  df-bj-proj 36979  df-bj-1upl 36986  df-bj-pr1 36989  df-bj-2upl 36999
This theorem is referenced by:  bj-2uplth  37009  bj-2uplex  37010
  Copyright terms: Public domain W3C validator