| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr21val | Structured version Visualization version GIF version | ||
| Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr21val | ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 37034 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-pr1eq 37025 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ pr1 ⦅𝐴, 𝐵⦆ = pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 4 | bj-pr1un 37026 | . 2 ⊢ pr1 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) | |
| 5 | bj-pr11val 37028 | . . . 4 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 6 | bj-pr1val 37027 | . . . . 5 ⊢ pr1 ({1o} × tag 𝐵) = if(1o = ∅, 𝐵, ∅) | |
| 7 | 1n0 8505 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 8 | 7 | neii 2935 | . . . . . 6 ⊢ ¬ 1o = ∅ |
| 9 | 8 | iffalsei 4515 | . . . . 5 ⊢ if(1o = ∅, 𝐵, ∅) = ∅ |
| 10 | 6, 9 | eqtri 2759 | . . . 4 ⊢ pr1 ({1o} × tag 𝐵) = ∅ |
| 11 | 5, 10 | uneq12i 4146 | . . 3 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = (𝐴 ∪ ∅) |
| 12 | un0 4374 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 13 | 11, 12 | eqtri 2759 | . 2 ⊢ (pr1 ⦅𝐴⦆ ∪ pr1 ({1o} × tag 𝐵)) = 𝐴 |
| 14 | 3, 4, 13 | 3eqtri 2763 | 1 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 ∅c0 4313 ifcif 4505 {csn 4606 × cxp 5657 1oc1o 8478 tag bj-ctag 36997 ⦅bj-c1upl 37020 pr1 bj-cpr1 37023 ⦅bj-c2uple 37033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-1o 8485 df-bj-sngl 36989 df-bj-tag 36998 df-bj-proj 37014 df-bj-1upl 37021 df-bj-pr1 37024 df-bj-2upl 37034 |
| This theorem is referenced by: bj-2uplth 37044 bj-2uplex 37045 |
| Copyright terms: Public domain | W3C validator |