Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored2 | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
bj-ismoored2.3 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
Ref | Expression |
---|---|
bj-ismoored2 | ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoored.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | bj-ismoored2.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
3 | intssuni2 4904 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ⊆ ∪ 𝐴) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∩ 𝐵 ⊆ ∪ 𝐴) |
5 | sseqin2 4149 | . . 3 ⊢ (∩ 𝐵 ⊆ ∪ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) |
7 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
8 | 7, 1 | bj-ismoored 35278 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
9 | 6, 8 | eqeltrrd 2840 | 1 ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∩ cint 4879 Moorecmoore 35274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-uni 4840 df-int 4880 df-bj-moore 35275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |