Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored2 Structured version   Visualization version   GIF version

Theorem bj-ismoored2 36510
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
bj-ismoored2.3 (𝜑𝐵 ≠ ∅)
Assertion
Ref Expression
bj-ismoored2 (𝜑 𝐵𝐴)

Proof of Theorem bj-ismoored2
StepHypRef Expression
1 bj-ismoored.2 . . . 4 (𝜑𝐵𝐴)
2 bj-ismoored2.3 . . . 4 (𝜑𝐵 ≠ ∅)
3 intssuni2 4971 . . . 4 ((𝐵𝐴𝐵 ≠ ∅) → 𝐵 𝐴)
41, 2, 3syl2anc 583 . . 3 (𝜑 𝐵 𝐴)
5 sseqin2 4211 . . 3 ( 𝐵 𝐴 ↔ ( 𝐴 𝐵) = 𝐵)
64, 5sylib 217 . 2 (𝜑 → ( 𝐴 𝐵) = 𝐵)
7 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
87, 1bj-ismoored 36509 . 2 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
96, 8eqeltrrd 2829 1 (𝜑 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2935  cin 3943  wss 3944  c0 4318   cuni 4903   cint 4944  Moorecmoore 36505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-in 3951  df-ss 3961  df-nul 4319  df-pw 4600  df-uni 4904  df-int 4945  df-bj-moore 36506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator