Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored2 Structured version   Visualization version   GIF version

Theorem bj-ismoored2 35206
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
bj-ismoored2.3 (𝜑𝐵 ≠ ∅)
Assertion
Ref Expression
bj-ismoored2 (𝜑 𝐵𝐴)

Proof of Theorem bj-ismoored2
StepHypRef Expression
1 bj-ismoored.2 . . . 4 (𝜑𝐵𝐴)
2 bj-ismoored2.3 . . . 4 (𝜑𝐵 ≠ ∅)
3 intssuni2 4901 . . . 4 ((𝐵𝐴𝐵 ≠ ∅) → 𝐵 𝐴)
41, 2, 3syl2anc 583 . . 3 (𝜑 𝐵 𝐴)
5 sseqin2 4146 . . 3 ( 𝐵 𝐴 ↔ ( 𝐴 𝐵) = 𝐵)
64, 5sylib 217 . 2 (𝜑 → ( 𝐴 𝐵) = 𝐵)
7 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
87, 1bj-ismoored 35205 . 2 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
96, 8eqeltrrd 2840 1 (𝜑 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253   cuni 4836   cint 4876  Moorecmoore 35201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-uni 4837  df-int 4877  df-bj-moore 35202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator