![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored2 | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
bj-ismoored2.3 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
Ref | Expression |
---|---|
bj-ismoored2 | ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoored.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | bj-ismoored2.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
3 | intssuni2 4971 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ⊆ ∪ 𝐴) | |
4 | 1, 2, 3 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∩ 𝐵 ⊆ ∪ 𝐴) |
5 | sseqin2 4211 | . . 3 ⊢ (∩ 𝐵 ⊆ ∪ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) |
7 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
8 | 7, 1 | bj-ismoored 36509 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
9 | 6, 8 | eqeltrrd 2829 | 1 ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 ∪ cuni 4903 ∩ cint 4944 Moorecmoore 36505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-in 3951 df-ss 3961 df-nul 4319 df-pw 4600 df-uni 4904 df-int 4945 df-bj-moore 36506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |