Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored2 Structured version   Visualization version   GIF version

Theorem bj-ismoored2 37089
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
bj-ismoored2.3 (𝜑𝐵 ≠ ∅)
Assertion
Ref Expression
bj-ismoored2 (𝜑 𝐵𝐴)

Proof of Theorem bj-ismoored2
StepHypRef Expression
1 bj-ismoored.2 . . . 4 (𝜑𝐵𝐴)
2 bj-ismoored2.3 . . . 4 (𝜑𝐵 ≠ ∅)
3 intssuni2 4933 . . . 4 ((𝐵𝐴𝐵 ≠ ∅) → 𝐵 𝐴)
41, 2, 3syl2anc 584 . . 3 (𝜑 𝐵 𝐴)
5 sseqin2 4182 . . 3 ( 𝐵 𝐴 ↔ ( 𝐴 𝐵) = 𝐵)
64, 5sylib 218 . 2 (𝜑 → ( 𝐴 𝐵) = 𝐵)
7 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
87, 1bj-ismoored 37088 . 2 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
96, 8eqeltrrd 2829 1 (𝜑 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cin 3910  wss 3911  c0 4292   cuni 4867   cint 4906  Moorecmoore 37084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-nul 4293  df-pw 4561  df-uni 4868  df-int 4907  df-bj-moore 37085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator