Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored2 Structured version   Visualization version   GIF version

Theorem bj-ismoored2 35977
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
bj-ismoored2.3 (𝜑𝐵 ≠ ∅)
Assertion
Ref Expression
bj-ismoored2 (𝜑 𝐵𝐴)

Proof of Theorem bj-ismoored2
StepHypRef Expression
1 bj-ismoored.2 . . . 4 (𝜑𝐵𝐴)
2 bj-ismoored2.3 . . . 4 (𝜑𝐵 ≠ ∅)
3 intssuni2 4976 . . . 4 ((𝐵𝐴𝐵 ≠ ∅) → 𝐵 𝐴)
41, 2, 3syl2anc 584 . . 3 (𝜑 𝐵 𝐴)
5 sseqin2 4214 . . 3 ( 𝐵 𝐴 ↔ ( 𝐴 𝐵) = 𝐵)
64, 5sylib 217 . 2 (𝜑 → ( 𝐴 𝐵) = 𝐵)
7 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
87, 1bj-ismoored 35976 . 2 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
96, 8eqeltrrd 2834 1 (𝜑 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2940  cin 3946  wss 3947  c0 4321   cuni 4907   cint 4949  Moorecmoore 35972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-pw 4603  df-uni 4908  df-int 4950  df-bj-moore 35973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator