| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored2 | Structured version Visualization version GIF version | ||
| Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
| bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| bj-ismoored2.3 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| Ref | Expression |
|---|---|
| bj-ismoored2 | ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ismoored.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | bj-ismoored2.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 3 | intssuni2 4921 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ⊆ ∪ 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∩ 𝐵 ⊆ ∪ 𝐴) |
| 5 | sseqin2 4171 | . . 3 ⊢ (∩ 𝐵 ⊆ ∪ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) |
| 7 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
| 8 | 7, 1 | bj-ismoored 37120 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
| 9 | 6, 8 | eqeltrrd 2830 | 1 ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 ∪ cuni 4857 ∩ cint 4895 Moorecmoore 37116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-in 3907 df-ss 3917 df-nul 4282 df-pw 4550 df-uni 4858 df-int 4896 df-bj-moore 37117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |