Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored Structured version   Visualization version   GIF version

Theorem bj-ismoored 37089
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
bj-ismoored (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)

Proof of Theorem bj-ismoored
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inteq 4909 . . . 4 (𝑥 = 𝐵 𝑥 = 𝐵)
21ineq2d 4179 . . 3 (𝑥 = 𝐵 → ( 𝐴 𝑥) = ( 𝐴 𝐵))
32eleq1d 2813 . 2 (𝑥 = 𝐵 → (( 𝐴 𝑥) ∈ 𝐴 ↔ ( 𝐴 𝐵) ∈ 𝐴))
4 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
5 bj-ismoore 37087 . . 3 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
64, 5sylib 218 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
7 bj-ismoored.2 . . 3 (𝜑𝐵𝐴)
84, 7sselpwd 5278 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
93, 6, 8rspcdva 3586 1 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867   cint 4906  Moorecmoore 37085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-nul 4293  df-pw 4561  df-uni 4868  df-int 4907  df-bj-moore 37086
This theorem is referenced by:  bj-ismoored2  37090
  Copyright terms: Public domain W3C validator