Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored Structured version   Visualization version   GIF version

Theorem bj-ismoored 35790
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
bj-ismoored (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)

Proof of Theorem bj-ismoored
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inteq 4946 . . . 4 (𝑥 = 𝐵 𝑥 = 𝐵)
21ineq2d 4208 . . 3 (𝑥 = 𝐵 → ( 𝐴 𝑥) = ( 𝐴 𝐵))
32eleq1d 2817 . 2 (𝑥 = 𝐵 → (( 𝐴 𝑥) ∈ 𝐴 ↔ ( 𝐴 𝐵) ∈ 𝐴))
4 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
5 bj-ismoore 35788 . . 3 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
64, 5sylib 217 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
7 bj-ismoored.2 . . 3 (𝜑𝐵𝐴)
84, 7sselpwd 5319 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
93, 6, 8rspcdva 3610 1 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3060  cin 3943  wss 3944  𝒫 cpw 4596   cuni 4901   cint 4943  Moorecmoore 35786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-in 3951  df-ss 3961  df-nul 4319  df-pw 4598  df-uni 4902  df-int 4944  df-bj-moore 35787
This theorem is referenced by:  bj-ismoored2  35791
  Copyright terms: Public domain W3C validator