Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored Structured version   Visualization version   GIF version

Theorem bj-ismoored 35205
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
bj-ismoored (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)

Proof of Theorem bj-ismoored
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inteq 4879 . . . 4 (𝑥 = 𝐵 𝑥 = 𝐵)
21ineq2d 4143 . . 3 (𝑥 = 𝐵 → ( 𝐴 𝑥) = ( 𝐴 𝐵))
32eleq1d 2823 . 2 (𝑥 = 𝐵 → (( 𝐴 𝑥) ∈ 𝐴 ↔ ( 𝐴 𝐵) ∈ 𝐴))
4 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
5 bj-ismoore 35203 . . 3 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
64, 5sylib 217 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
7 bj-ismoored.2 . . 3 (𝜑𝐵𝐴)
84, 7sselpwd 5245 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
93, 6, 8rspcdva 3554 1 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836   cint 4876  Moorecmoore 35201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-uni 4837  df-int 4877  df-bj-moore 35202
This theorem is referenced by:  bj-ismoored2  35206
  Copyright terms: Public domain W3C validator