![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
bj-ismoored | ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoored.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
3 | bj-ismoorec 33553 | . . 3 ⊢ (𝐴 ∈ Moore ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) | |
4 | 2, 3 | sylib 210 | . 2 ⊢ (𝜑 → (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
5 | elpw2g 5019 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
6 | 5 | biimparc 472 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ V) → 𝐵 ∈ 𝒫 𝐴) |
7 | inteq 4670 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ∩ 𝑥 = ∩ 𝐵) | |
8 | 7 | ineq2d 4012 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (∪ 𝐴 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝐵)) |
9 | 8 | eleq1d 2863 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
10 | 9 | rspcv 3493 | . . . 4 ⊢ (𝐵 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ V) → (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
12 | 11 | expimpd 446 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
13 | 1, 4, 12 | sylc 65 | 1 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 Vcvv 3385 ∩ cin 3768 ⊆ wss 3769 𝒫 cpw 4349 ∪ cuni 4628 ∩ cint 4667 Moorecmoore 33550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 ax-sep 4975 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-v 3387 df-in 3776 df-ss 3783 df-pw 4351 df-uni 4629 df-int 4668 df-bj-moore 33551 |
This theorem is referenced by: bj-ismoored2 33556 |
Copyright terms: Public domain | W3C validator |