Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored Structured version   Visualization version   GIF version

Theorem bj-ismoored 37090
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1 (𝜑𝐴Moore)
bj-ismoored.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
bj-ismoored (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)

Proof of Theorem bj-ismoored
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inteq 4954 . . . 4 (𝑥 = 𝐵 𝑥 = 𝐵)
21ineq2d 4228 . . 3 (𝑥 = 𝐵 → ( 𝐴 𝑥) = ( 𝐴 𝐵))
32eleq1d 2824 . 2 (𝑥 = 𝐵 → (( 𝐴 𝑥) ∈ 𝐴 ↔ ( 𝐴 𝐵) ∈ 𝐴))
4 bj-ismoored.1 . . 3 (𝜑𝐴Moore)
5 bj-ismoore 37088 . . 3 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
64, 5sylib 218 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
7 bj-ismoored.2 . . 3 (𝜑𝐵𝐴)
84, 7sselpwd 5334 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
93, 6, 8rspcdva 3623 1 (𝜑 → ( 𝐴 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   cint 4951  Moorecmoore 37086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-in 3970  df-ss 3980  df-nul 4340  df-pw 4607  df-uni 4913  df-int 4952  df-bj-moore 37087
This theorem is referenced by:  bj-ismoored2  37091
  Copyright terms: Public domain W3C validator