![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
bj-ismoored | ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4954 | . . . 4 ⊢ (𝑥 = 𝐵 → ∩ 𝑥 = ∩ 𝐵) | |
2 | 1 | ineq2d 4228 | . . 3 ⊢ (𝑥 = 𝐵 → (∪ 𝐴 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝐵)) |
3 | 2 | eleq1d 2824 | . 2 ⊢ (𝑥 = 𝐵 → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
4 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
5 | bj-ismoore 37088 | . . 3 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
7 | bj-ismoored.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
8 | 4, 7 | sselpwd 5334 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
9 | 3, 6, 8 | rspcdva 3623 | 1 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 Moorecmoore 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-uni 4913 df-int 4952 df-bj-moore 37087 |
This theorem is referenced by: bj-ismoored2 37091 |
Copyright terms: Public domain | W3C validator |