Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
bj-ismoored | ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4879 | . . . 4 ⊢ (𝑥 = 𝐵 → ∩ 𝑥 = ∩ 𝐵) | |
2 | 1 | ineq2d 4143 | . . 3 ⊢ (𝑥 = 𝐵 → (∪ 𝐴 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝐵)) |
3 | 2 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐵 → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
4 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
5 | bj-ismoore 35203 | . . 3 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
7 | bj-ismoored.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
8 | 4, 7 | sselpwd 5245 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
9 | 3, 6, 8 | rspcdva 3554 | 1 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ∩ cint 4876 Moorecmoore 35201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-uni 4837 df-int 4877 df-bj-moore 35202 |
This theorem is referenced by: bj-ismoored2 35206 |
Copyright terms: Public domain | W3C validator |