| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored | Structured version Visualization version GIF version | ||
| Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
| bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| bj-ismoored | ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4916 | . . . 4 ⊢ (𝑥 = 𝐵 → ∩ 𝑥 = ∩ 𝐵) | |
| 2 | 1 | ineq2d 4186 | . . 3 ⊢ (𝑥 = 𝐵 → (∪ 𝐴 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝐵)) |
| 3 | 2 | eleq1d 2814 | . 2 ⊢ (𝑥 = 𝐵 → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
| 4 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
| 5 | bj-ismoore 37100 | . . 3 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
| 7 | bj-ismoored.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 8 | 4, 7 | sselpwd 5286 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
| 9 | 3, 6, 8 | rspcdva 3592 | 1 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ∩ cint 4913 Moorecmoore 37098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 df-pw 4568 df-uni 4875 df-int 4914 df-bj-moore 37099 |
| This theorem is referenced by: bj-ismoored2 37103 |
| Copyright terms: Public domain | W3C validator |