![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
bj-ismoored | ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4946 | . . . 4 ⊢ (𝑥 = 𝐵 → ∩ 𝑥 = ∩ 𝐵) | |
2 | 1 | ineq2d 4207 | . . 3 ⊢ (𝑥 = 𝐵 → (∪ 𝐴 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝐵)) |
3 | 2 | eleq1d 2812 | . 2 ⊢ (𝑥 = 𝐵 → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴)) |
4 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
5 | bj-ismoore 36493 | . . 3 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
7 | bj-ismoored.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
8 | 4, 7 | sselpwd 5319 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
9 | 3, 6, 8 | rspcdva 3607 | 1 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∩ cin 3942 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 ∩ cint 4943 Moorecmoore 36491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-in 3950 df-ss 3960 df-nul 4318 df-pw 4599 df-uni 4903 df-int 4944 df-bj-moore 36492 |
This theorem is referenced by: bj-ismoored2 36496 |
Copyright terms: Public domain | W3C validator |