![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismooredr | Structured version Visualization version GIF version |
Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismooredr.1 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
bj-ismooredr | ⊢ (𝜑 → 𝐴 ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4612 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | bj-ismooredr.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
4 | 1, 3 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
5 | 4 | ralrimiv 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
6 | bj-ismoore 37088 | . 2 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 Moorecmoore 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-uni 4913 df-int 4952 df-bj-moore 37087 |
This theorem is referenced by: bj-ismooredr2 37093 bj-discrmoore 37094 |
Copyright terms: Public domain | W3C validator |