![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismooredr | Structured version Visualization version GIF version |
Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismooredr.1 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
bj-ismooredr | ⊢ (𝜑 → 𝐴 ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4609 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | bj-ismooredr.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
3 | 2 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
4 | 1, 3 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
5 | 4 | ralrimiv 3145 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
6 | bj-ismoore 35981 | . 2 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 ∩ cint 4950 Moorecmoore 35979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-pw 4604 df-uni 4909 df-int 4951 df-bj-moore 35980 |
This theorem is referenced by: bj-ismooredr2 35986 bj-discrmoore 35987 |
Copyright terms: Public domain | W3C validator |