Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismooredr Structured version   Visualization version   GIF version

Theorem bj-ismooredr 35280
Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.)
Hypothesis
Ref Expression
bj-ismooredr.1 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
Assertion
Ref Expression
bj-ismooredr (𝜑𝐴Moore)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴

Proof of Theorem bj-ismooredr
StepHypRef Expression
1 elpwi 4542 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 bj-ismooredr.1 . . . . 5 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
32ex 413 . . . 4 (𝜑 → (𝑥𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
41, 3syl5 34 . . 3 (𝜑 → (𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
54ralrimiv 3102 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
6 bj-ismoore 35276 . 2 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
75, 6sylibr 233 1 (𝜑𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839   cint 4879  Moorecmoore 35274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-uni 4840  df-int 4880  df-bj-moore 35275
This theorem is referenced by:  bj-ismooredr2  35281  bj-discrmoore  35282
  Copyright terms: Public domain W3C validator