Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismooredr Structured version   Visualization version   GIF version

Theorem bj-ismooredr 37104
Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.)
Hypothesis
Ref Expression
bj-ismooredr.1 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
Assertion
Ref Expression
bj-ismooredr (𝜑𝐴Moore)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴

Proof of Theorem bj-ismooredr
StepHypRef Expression
1 elpwi 4573 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 bj-ismooredr.1 . . . . 5 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
32ex 412 . . . 4 (𝜑 → (𝑥𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
41, 3syl5 34 . . 3 (𝜑 → (𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
54ralrimiv 3125 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
6 bj-ismoore 37100 . 2 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
75, 6sylibr 234 1 (𝜑𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   cint 4913  Moorecmoore 37098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-nul 4300  df-pw 4568  df-uni 4875  df-int 4914  df-bj-moore 37099
This theorem is referenced by:  bj-ismooredr2  37105  bj-discrmoore  37106
  Copyright terms: Public domain W3C validator