Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismooredr | Structured version Visualization version GIF version |
Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismooredr.1 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
bj-ismooredr | ⊢ (𝜑 → 𝐴 ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4539 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | bj-ismooredr.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
4 | 1, 3 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
5 | 4 | ralrimiv 3106 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
6 | bj-ismoore 35203 | . 2 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ∩ cint 4876 Moorecmoore 35201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-uni 4837 df-int 4877 df-bj-moore 35202 |
This theorem is referenced by: bj-ismooredr2 35208 bj-discrmoore 35209 |
Copyright terms: Public domain | W3C validator |