Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismooredr Structured version   Visualization version   GIF version

Theorem bj-ismooredr 37097
Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.)
Hypothesis
Ref Expression
bj-ismooredr.1 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
Assertion
Ref Expression
bj-ismooredr (𝜑𝐴Moore)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴

Proof of Theorem bj-ismooredr
StepHypRef Expression
1 elpwi 4570 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 bj-ismooredr.1 . . . . 5 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
32ex 412 . . . 4 (𝜑 → (𝑥𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
41, 3syl5 34 . . 3 (𝜑 → (𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
54ralrimiv 3124 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
6 bj-ismoore 37093 . 2 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
75, 6sylibr 234 1 (𝜑𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871   cint 4910  Moorecmoore 37091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921  df-ss 3931  df-nul 4297  df-pw 4565  df-uni 4872  df-int 4911  df-bj-moore 37092
This theorem is referenced by:  bj-ismooredr2  37098  bj-discrmoore  37099
  Copyright terms: Public domain W3C validator