![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-raldifsn | Structured version Visualization version GIF version |
Description: All elements in a set satisfy a given property if and only if all but one satisfy that property and that one also does. Typically, this can be used for characterizations that are proved using different methods for a given element and for all others, for instance zero and nonzero numbers, or the empty set and nonempty sets. (Contributed by BJ, 7-Dec-2021.) |
Ref | Expression |
---|---|
bj-raldifsn.is | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-raldifsn | ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsnid 4835 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
2 | 1 | eqcomd 2746 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝐵}) ∪ {𝐵})) |
3 | 2 | raleqdv 3334 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑)) |
4 | ralunb 4220 | . . 3 ⊢ (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))) |
6 | bj-raldifsn.is | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
7 | 6 | ralsng 4697 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
8 | 7 | anbi2d 629 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
9 | 3, 5, 8 | 3bitrd 305 | 1 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∪ cun 3974 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 |
This theorem is referenced by: bj-0int 37067 |
Copyright terms: Public domain | W3C validator |