Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-raldifsn Structured version   Visualization version   GIF version

Theorem bj-raldifsn 34286
Description: All elements in a set satisfy a given property if and only if all but one satisfy that property and that one also does. Typically, this can be used for characterizations that are proved using different methods for a given element and for all others, for instance zero and nonzero numbers, or the empty set and nonempty sets. (Contributed by BJ, 7-Dec-2021.)
Hypothesis
Ref Expression
bj-raldifsn.is (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
bj-raldifsn (𝐵𝐴 → (∀𝑥𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-raldifsn
StepHypRef Expression
1 difsnid 4735 . . . 4 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
21eqcomd 2824 . . 3 (𝐵𝐴𝐴 = ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
32raleqdv 3413 . 2 (𝐵𝐴 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑))
4 ralunb 4164 . . 3 (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
54a1i 11 . 2 (𝐵𝐴 → (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)))
6 bj-raldifsn.is . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
76ralsng 4605 . . 3 (𝐵𝐴 → (∀𝑥 ∈ {𝐵}𝜑𝜓))
87anbi2d 628 . 2 (𝐵𝐴 → ((∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑𝜓)))
93, 5, 83bitrd 306 1 (𝐵𝐴 → (∀𝑥𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  cdif 3930  cun 3931  {csn 4557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-sn 4558
This theorem is referenced by:  bj-0int  34287
  Copyright terms: Public domain W3C validator