![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-raldifsn | Structured version Visualization version GIF version |
Description: All elements in a set satisfy a given property if and only if all but one satisfy that property and that one also does. Typically, this can be used for characterizations that are proved using different methods for a given element and for all others, for instance zero and nonzero numbers, or the empty set and nonempty sets. (Contributed by BJ, 7-Dec-2021.) |
Ref | Expression |
---|---|
bj-raldifsn.is | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-raldifsn | ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsnid 4815 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
2 | 1 | eqcomd 2731 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝐵}) ∪ {𝐵})) |
3 | 2 | raleqdv 3314 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑)) |
4 | ralunb 4189 | . . 3 ⊢ (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))) |
6 | bj-raldifsn.is | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
7 | 6 | ralsng 4679 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
8 | 7 | anbi2d 628 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
9 | 3, 5, 8 | 3bitrd 304 | 1 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∖ cdif 3941 ∪ cun 3942 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-sn 4631 |
This theorem is referenced by: bj-0int 36711 |
Copyright terms: Public domain | W3C validator |