Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-raldifsn | Structured version Visualization version GIF version |
Description: All elements in a set satisfy a given property if and only if all but one satisfy that property and that one also does. Typically, this can be used for characterizations that are proved using different methods for a given element and for all others, for instance zero and nonzero numbers, or the empty set and nonempty sets. (Contributed by BJ, 7-Dec-2021.) |
Ref | Expression |
---|---|
bj-raldifsn.is | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-raldifsn | ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsnid 4740 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
2 | 1 | eqcomd 2744 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝐵}) ∪ {𝐵})) |
3 | 2 | raleqdv 3339 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑)) |
4 | ralunb 4121 | . . 3 ⊢ (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))) |
6 | bj-raldifsn.is | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
7 | 6 | ralsng 4606 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
8 | 7 | anbi2d 628 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
9 | 3, 5, 8 | 3bitrd 304 | 1 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ∪ cun 3881 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 |
This theorem is referenced by: bj-0int 35199 |
Copyright terms: Public domain | W3C validator |